

Contents	
I. Disclaimer	5~6
II. Concepts of the Biosimilar	
1. Definition of Biosimilar	8
2. Definition of Similarity/Biosimilarity	9
3. Development Process of Biosimilar	11
4. Demonstration of Similarity/Biosimilarity	14
5. Reference Product	16
III. Analytical Comparability Assessment	
6. Role of Quality Analysis	19
7. Structure vs Function/Immunogenicity of a Monoclonal Antibody -	21
8. Quality Attributes	29

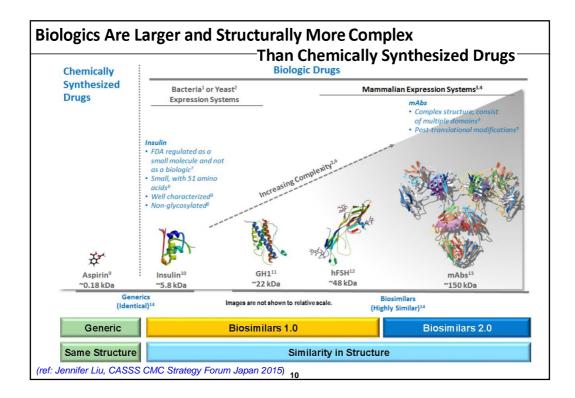
IV.	Appendix 1 : Additional Information	
Α.	Understanding Reference Product	65
Β.	Differences of Producing cell lines	73
C.	Differences of Formulation	79
D.	Example of Analytical Comparability Assessment	81
E.	Acceptance similarity criteria and Statistical approaches -	91
F.	ADCC : Physiological system & Exaggerated system	96
G.	CDC	98
Η.	Allotype of Fc gamma Receptors	99
I.	Relevant Guidelines	102
J.	List of Abbreviations	105
	Appendix 2 : Case Study (Remsima/Inflectra)	view repo

I. Disclaimer

Disclaimer

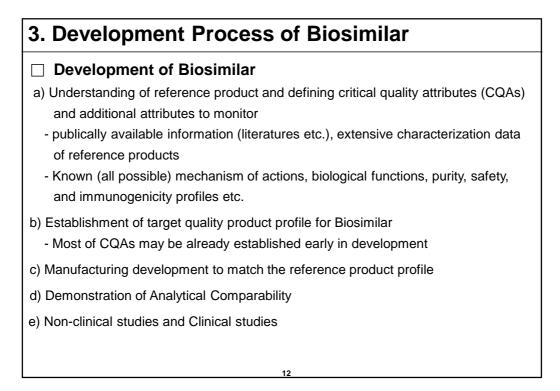
- □ This material is a compilation of publicly available information on the current approach for analytical comparability of biosimilars, especially monoclonal antibodies.
- This material does not include any specific recommendations of the IPRP BWG and the views and opinions expressed in this material are those of the individuals who serve in his/her personal capacity and do not necessarily reflect the official policy or position of any agency or organization.
- Names of products or manufacturers used in this material are only the examples to help reader's understanding and do not reflect any support of IPRP, WHO, or other organizations for licensing/authorization or ensuring quality/safety/efficacy of products.

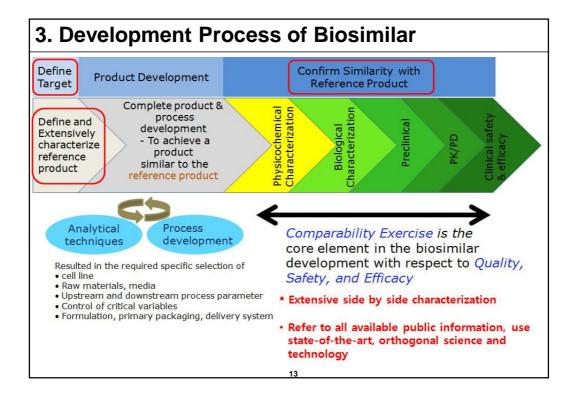
Disclaimer


- □ This material does not create any specific rights for anyone to use commercially. It is not protected under copyright and is accessible by anyone who wants to use it.
- This material is intended to help regulatory reviewers before he or she begins to review quality of biosimilars, who has certain level of understanding for biotherapeutics and review experiences.
- □ This material could be used as initiation step for training of biosimilarity as a complementary tool and interactive course such as hands-on training.

II. Concepts of the Biosimilar

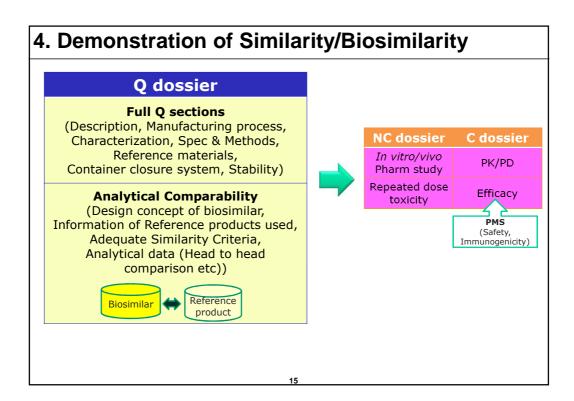
1. Definition of Biosimilar


- □ WHO Similar biotherapeutic product (SBP) is a biotherapeutic product which is similar in terms of quality, safety and efficacy to an already licensed reference biotherapeutic product. (*ref: WHO, Guidelines on Evaluation of Similar Biotherapeutic Products (SBPs), 2009*)
- □ EMA A biosimilar is a biological medicinal product that contains a version of the active substance of an already authorised original biological medicinal product (reference medicinal product) A biosimilar demonstrates similarity to the reference medicinal product in terms of quality characteristics, biological activity, safety and efficacy based on a comprehensive comparability exercise. (*ref: EMA, Guideline on similar biological medicinal products, 2014*)
- □ US FDA The biological product is highly similar to the reference product notwithstanding minor differences in clinically inactive components, and there are no clinically meaningful differences between the biological product and the reference product in terms of the safety, purity, and potency of the product. (*ref: Section 7002(b)(3) of the Affordable Care Act, adding section 351(i)(2) of the PHS Act*)


2. Definition of Similarity/Biosimilarity
□ Similar does not equal to Same
✓ Highly similar to the reference product in all clinically relevant quality attributes, i.e. product attributes that may impact clinical performance. (ref: WHO, Guidelines on Evaluation of Similar Biotherapeutic Products (SBPs), 2009)
✓ highly similar to the reference product notwithstanding minor differences in clinically inactive components, and that there are no clinically meaningful differences between the biological product and the reference product in terms of the safety, purity, and potency of the product. (ref: Section 7002(b)(3) of the Affordable Care Act, adding section 351(i)(2) of the PHS Act)
Biotherapeutics are almost impossible to be produced as the same molecule of reference products
□ Why?
a) Biotherapeutics are very complex and heterogeneous molecules
b) Sensitive to differences in cell lines, manufacturing processes and formulation
□ A comprehansive comparability exercises are needed to demonstrate biosimilarity
between reference products and biosimilars!!

3. Development Process of Biosimilar

- Increased knowledge of the relationship between biochemical, physico-chemical and biological properties of the product and clinical outcomes facilitates development of a biosimilar.
- □ General considerations
- a) Biosimilar **shall utilize the potential mechanism(s) of action** for the reference product.
- b) Has the same route of administration and dosage form as the reference product.
- c) Differences from the reference product as regards strength, pharmaceutical form, formulation, excipients or presentation require justification. If needed, additional data should be provided. Any difference should not compromise safety. (*ref: EMA, Guideline on similar biological medicinal products, 2014*)


4. Demonstration of Similarity/Biosimilarity

□ Stepwise approach

- a) Demonstration of similarity of a biosimilar and a reference product in terms of quality is a prerequisite for reducing the nonclinical and clinical data set required for licensure.
- b) Move onto the next level to address a residual uncertainty if any.

□ Totality of evidence

a) The decision to license a biosimilar product should be based on comprehensive evaluation of the whole data package for each of Quality, Non-Clinical and Clinical parameters to demonstrate similarity to a Reference Product.

5. Reference Product

- □ must be a medicinal product **approved** within the regulated territory, on the basis of a **complete dossier**. (*ref: EMA, Guideline on similar biological medicinal product, 2014*)
- □ A single reference product should be used as the comparator throughout the comparability programme for quality, safety and efficacy studies during the development of a biosimilar in order to allow the generation of coherent data and conclusions. (*ref: EMA, Guideline on similar biological medicinal product, 2014*)
- □ Shifts in quality profile of Reference Product
- a) Such events could occur during the development of a biosimilar and may result in a development according to a QTPP which is no longer fully representative of the reference product available on the market.
- b) The ranges identified before and after the observed shift in quality profile could normally be used to support the biosimilar comparability exercise at the quality level, as either range is representative of the reference medicinal product.
 (*ref: EMA, Guideline on similar biological medicinal products containing biotechnology-derived proteins as active substance: quality issues, 2014*)

5. Reference Product

☐ The majority of the regulations necessarily require demonstration of comparability to a local reference product approved in their jurisdiction.

- a) Possibility of geographic divergence of reference products in quality attributes
 - Variations from different supply chain (e.g. Difference of manufacturing sites)
 - Variations after separation of license holders & independent change
 - Variations from sequential application of a manufacturing process change
- ☐ The Use of a Foreign Reference Product
- a) To facilitate global development, most NRAs accept the use of non-local reference products by demonstrating the equivalence of the local and foreign reference products (**Bridging study**).

(see also Appendix II, 'A. Understanding Reference product')

III. Analytical Comparability Assessment

6. Role of quality analysis

□ Quality analytics are an essential tool for establishing similarity.

- a) Analytics are typically more sensitive than traditional clinical endpoints in this respect.
- b) Clinical studies play a role in supporting biosimilarity.

(ref: Supporting biosimilarity and extrapolation, GABI Journal, vol 4 (4), 2015)

□ Robust characterization is essential.

a) The more comprehensive and robust the characterization data,

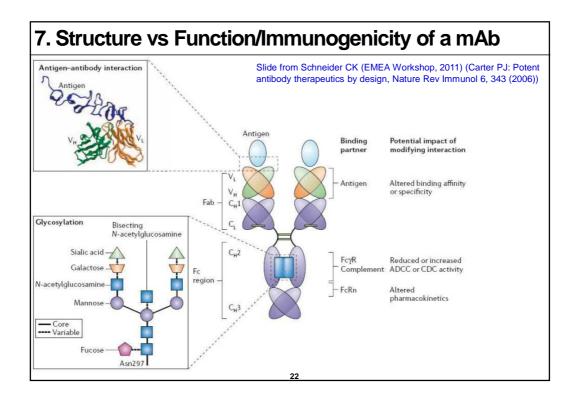
- ⇒ the stronger the justification for selective and targeted approach to animal and human testing
- ⇒ the stronger the justification for differences

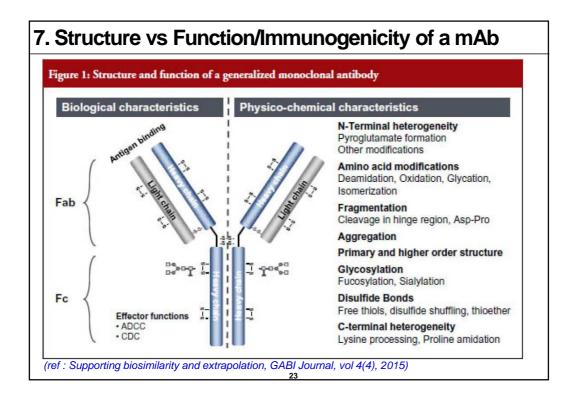
	Factors impacting	Criteria	Less data	More data	
"Similarity"		Thorough understanding of reference product	Allows for good justification for similarity windo		
	1. Expression System 2. Manf. Process	Expression cell line and formulation	Same	Different	
_	3. Physiochemical	Amino acid sequence	Identical	May not be a biosimilar	
Characterization	4. Functional	Structure	Highly similar	Different	
	5. Receptor Binding	Post translational modification	Highly similar	Different	
	6. Impurities	Kinetics, Binding	Equivalent	Not equivalent - May not be a biosimilar	
	7. Ref. Prod & Stand. 8. Drug Product	Process & Product related impurity	Highly similar	Different - non-clinical data may be needed (toxicity)	
-		Forced degradation	Highly similar	Different	
	9. Stability	Comprehensive understanding	Ex	pected	

7. Structure vs Function/Immunogenicity of a mAb

□ Biotherapeutics, especially monoclonal antibodies(mAb) are very large, complex and heterogeneous molecules.

□ Structure vs Function


- a) Fab function : biological activity via binding to specific target
- b) Fc function : binding to $Fc\gamma R/C1q$ etc \Rightarrow CDC, ADCC, ADCP etc.


binding to FcRn ⇒ protecting IgG from lysosomal degradation, PK profile

□ Structure vs Immunogenicity

- a) Process-related impurities (Host cell protein, endotoxin etc.)
- b) Product-related substances/impurities

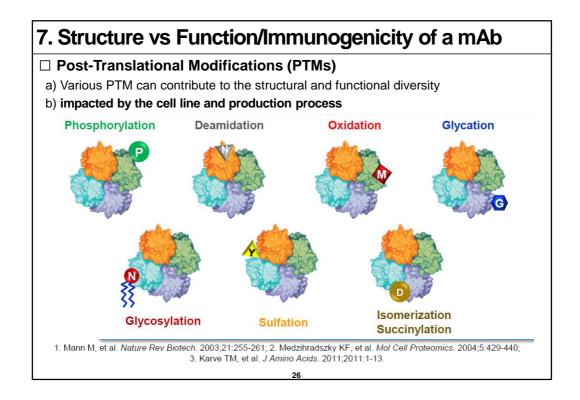
: Non-human oligosaccharides (glycosylation profile), Aggregates etc.

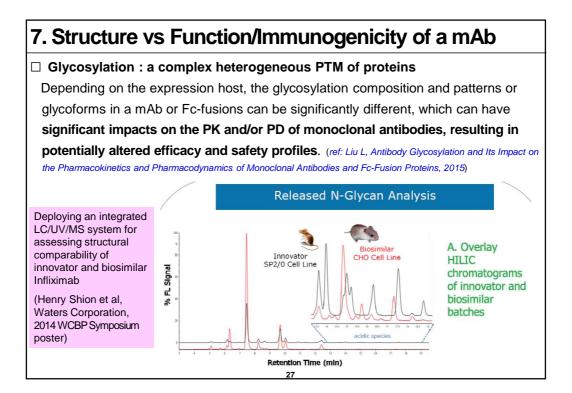
7. Structure vs Function/Immunogenicity of a mAb

□ Process-related impurities

(ref: EMA, Guideline on similar biological medicinal products, 2014)

- a) Process-related impurities may differ between the originator and biosimilar products, although these should be minimised. It is preferable to rely on purification processes to remove impurities rather than to establish a non-clinical testing program for their qualification. Differences that may confer a safety advantage (e.g. lower levels of impurities) should be explained but are unlikely to preclude biosimilarity.
- b) Process-related impurities (e.g. host cell proteins, host cell DNA, reagents, downstream impurities, etc.) are expected to differ qualitatively from one process to another. Therefore, the qualitative comparison of these parameters may not be relevant in the biosimilar comparability exercise. Nevertheless, state-of-the-art analytical technologies following existing guidelines and compendial requirements should be applied, and the potential risks related to these identified impurities (e.g. immunogenicity) will have to be appropriately documented and justified.


24


7. Structure vs Function/Immunogenicity of a mAb

□ Heterogeneity in recombinant mAbs

- a) Monoclonal antibodies commonly display several sources of heterogeneity.
 (e.g. C- terminal lysine processing, N-terminal pyroglutamate, deamidation, oxidation, isomerisation, fragmentation, disulfide bond mismatch, N-linked oligosaccharide, glycation), which lead to a complex purity/impurity profile comprising several molecular entities or variants. (*ref: EMA, Guideline on Development, Production, Characterization and Specifications for Monoclonal Antibodies and Related Products, 2009*)
- b) All of these product-related variants may alter the biological properties of the expressed recombinant protein. Therefore, identification and determination of the relative levels of these protein variants should be included in the comparative analytical characterization studies. (ref: US FDA, Guidance, Quality Considerations in Demonstrating Biosimilarity of a Therapeutic Protein Product to a Reference Product, 2015)
- c) Also should evaluate the impact on potency, immunogenicity and PK/PD etc. ex) C-terminal Lysine : variability of truncation level
 - \Rightarrow variability of charge profile (i.e., charge heterogeneity)

⇒ but doesn't seem to impact potency or safety profile

Summary of (poter mAb and Fc-fusior	ntial) key Impacts of Glycosylation on the PK and PD of proteins
Glycan	Impacts
Mannose	 Increases the clearance of mAb Enhances FcrRIIIa binding/ADCC of mAb Reduces C1q binding/CDC of mAb
Fucose	 Interferes with binding to FcrRIIIa Defucosylation enhances FcrRIIIa binding/ADCC activity
Galactose	 Exposed galactose may increase the clearance of mAb Enhances CDC of mAb
GlcNAc	 Bisecting GlcNAc enhance FcrRIIIa binding/ADCC Increases the clearance of Fc-fusion proteins
Sialic acid NANA	 Critical for reducing the clearance of Fc-fusion proteins Anti-inflammatory activity
Sialic acid NGNA	 Interferes with FcrRIIIa binding and reduce ADCC activity of mAb May be immunogenic in humans
Galα1-3Galβ1-GlcNAc-R	Immunogenic in humans and may induce anaphylaxes

8. Quality Attributes (QAs)

□ The quality target product profile (QTPP) of a biosimilar should be based on data collected on the chosen reference medicinal product, including publicly available information and data obtained from extensive characterisation of the reference medicinal product. (*ref: EMA, Guideline on similar biological medicinal products containing biotechnology-derived proteins as active substance: quality issues, 2014*)

Physicochemical and functional characterization studies should be sufficient to establish relevant quality attributes including those that define a product's identity, quantity, safety, purity, and potency. (*ref: US FDA, Guidance, Quality considerations in Demonstrating Biosimilarity of a Therapeutic Protein Product to a Reference Product, 2015*)

8. Quality Attributes (QAs)

□ The Identification of the **potential correlations between QAs** (or orthogonal methods) are important to evaluate clinical relevance.

ex) %Afucosylation \Rightarrow FcrRIIIa binding \Rightarrow ADCC \Rightarrow Clinical relevance

 $\hfill\square$ Some QAs should consider the age of the different batches of reference product.

ex) Size and charge variants : can be changed with the passage of time at the recommended storage condition ⇒ may analyze the data by plotting against the estimated material age at the time of testing.

Acceptable differences and Impacted quality attributes

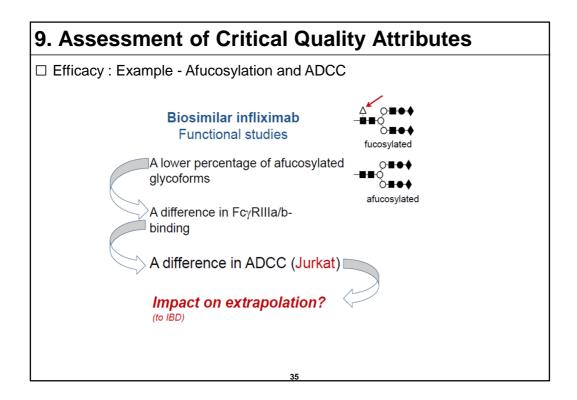
- a) Expression system : may result in undesired consequences, such as atypical glycosylation pattern, higher variability or a different impurity profile, as compared with those of the reference medicinal product.
- b) Formulation : purity/impurity level, stability profile etc.
- c) Container/closure system : compatibility profile, stability profile etc.

(see also Appendix II, 'B. Differences of Producing cell lines' and 'C. Differences of Formulation') 30

8. Quality attributes (QAs)

- □ Process-related impurities (e.g. host cell protein, DNA)
- a) specific to the individual process
- b) It is preferable to rely on purification processes to remove impurities. Differences that may confer a safety advantage (e.g. lower levels of impurities) should be explained. (*ref: EMA, Guideline on similar biological medicinal products, 2014*)
- □ Particular attention should be given to quality attributes that might have an impact on immunogenicity or potency, or that have not been identified in the reference medicinal product. (*ref: EMA, Guideline on similar biological medicinal products containing biotechnology-derived proteins as active substance: quality issues, 2014*)

8. Quality Attributes (QAs)

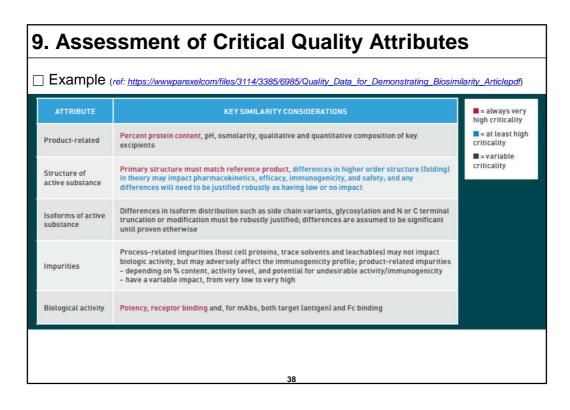

□ Quality Attributes of mAb (Example)

- a) Primary structure (amino acid sequence, N/C-terminal sequence, Molecular weight, peptide mapping profile, Disulfide bonds structure, etc.)
- b) Higher order structure (secondary, tertiary and quaternary structure)
- c) Additional Post-translational modifications (Oxidation, Deamidation, Glycation etc.)
- d) Charge variants (pl value, qualitative and quantitative profile of acidic/main/basic species)
- e) Size variants (qualitative and quantitative profile of High/Low molecular weight species, aggregates, sub-visible particles etc)
- f) Glycosylation profile (Glycosylation profile, site-specific profile, site-occupancy etc.)

8. Quality Attributes (QAs)

- □ Quality attributes of mAb (Examples)
- g) Strength/Content (Protein concentration/amount, Volume in container)
- h) Potency (target binding, mechanism of action exploration)
- i) Process-related Impurities (host-cell protein, host-cell DNA etc.)
- j) Formulation (pH, excipient content etc.)
- k) Degradation/Stability profiles

9. Assessment of Critical Quality Attributes
□ Identification of CQAs : Considering the impact on clinical performance and
degree of uncertainty in each quality attribute
a) used to guide the product and process development.
b) should be considered to determine similarity in quality and impact on extrapolation of indications.
c) should be considered to design the control strategy of the quality and
manufacturing process.
Potential clinical impact of quality attributes
a) efficacy
b) pharmacokinetics
c) immunogenicity (which remains the main reason of clinical studies)
d) safety/toxicity : pharmacological toxicity (biological activities) & off-target toxicity
(rare with biologicals since they are highly specific to their target)
Degree of Uncertainty : the level of attribute present, the possibility of deviation
occurs, and the assay sensitivity
34

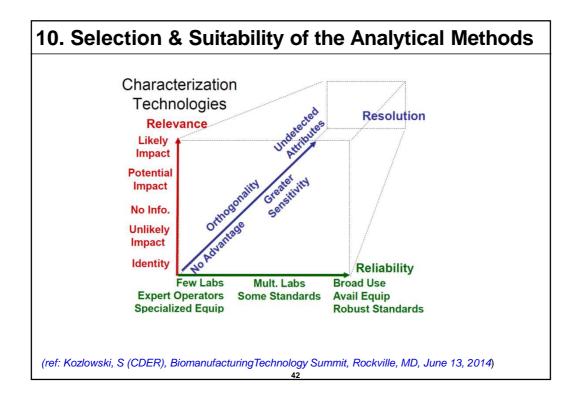

that affect the imm	nunogenicity (ref: Supporting biosimilarity and extrapolation, GABI,	Vol 4, 2
Table 1: Immunogenicity: c	ritical attributes are well known	
Attribute (example)	Comment/analytical methods (examples)	
Amino acid sequence	Must be identical/orthogonal peptide maps with high resolution MS and MS/MS sequencing	
Aggregates	Critical factor/SEC, FFF, MALLS, DLS, AUC, imaging methods, particle characterization	
Folding, disulphide bridges, free cysteines	CD spectroscopy, H-D-Exchange, FT-IR, X-ray, 1D and 2 D NMR, peptide mapping	
Degradation	Degradation products that do not occur in the body potentially immunogenic/RP-HPLC, CEX, Papain-HIC, Papain-IEX, peptide map, MS	
Hostcell proteins	Adjuvant effect or complex formation/ELISA, mass spectrometry	
Leachables/extractables	Adjuvant effect or effect on folding/aggregation; HPLC with highly sensitive detectors, mass spectrometry	
Glycosylation: Galactose-α1,3-Galactose	Reported for cetuximab patients pre-sensitized by tick bites only/ NP-HPLC of 2AB-labeled glycans coupled to ESI-MS, exoglycosidase digestion, MALDI TOF/TOF, CGE, peptide map	
Glycosylation:N-glycolyl- neuraminic acid (NGNA)	NP-HPLC, WAX, HPAEC, RP-HPLC after DMB-labelling, mass spectrometry	

9. Assessment of Critical Quality Attributes

□ Quality attributes that affect the Pharmacokinetics (ADME)

(ref: Supporting biosimilarity and extrapolation, GABI Journal, vol 4 (4), 2015)

Attribute (example)	Comment/analytical methods (examples)
Amino acid sequence	Must be identical/orthogonal peptide maps with high resolution MS and MS/MS sequencing
Folding, disulphide bridges, free cysteines	Misfolding leads to faster clearance/CD spectroscopy, H-D- Exchange, FT-IR, X-ray, 1D and 2D NMR, peptide mapping
Oxidation (methionine)	Can decrease binding to FcRn and thus lead to increased exposure/ RP-HPLC, Papain-HIC, peptide map, mass spectrometry
Degradation	Degraded product is cleared quickly/RP-HPLC, CEX, Papain-HIC, Papain-IEX, peptide map, MS
Glycosylation: Sialylation	Reduced clearance via liver asialo-glycoprotein receptors, increased proteolytic stability; no major impact for mAbs/NP-HPLC, WAX, HPAEC, RP-HPLC after DMB-labelling, mass spectrometry


•			efing Document, 2015)
Table 5 - Criticality of qua Quality Attribute	Criticality	Belevant for	Methods Used
Amino acid sequence	Very High	Efficacy, Safety, Immunogenicity	Edman, peptide mapping, MS
Potency	Very High	Efficacy Safety	Bioassay
Target binding	Very High	Efficacy Safety	Surface plasmon resonance
Protein concentration	Very High	Efficacy	Content determination
Subvisible particles	High	Immunogenicity	Light obscuration
Oxidized variants	High	Efficacy	Reversed phase chromatography
Higher order structure	High	Efficacy Immunogenicity	CD and NMR spectroscopy
High-molecular weight variants/aggregates	High	Immunogenicity	Size exclusion chromatography
Truncated variants	Low	None	Reversed phase chromatography coupled with MS
Norleucine	Very Low	None	Reversed phase chromatography
Deamidation	Very Low	None	Cation exchange chromatography

10. Selection & Suitability of the Analytical Methods Assays should provide results that are meaningful (Relevance) and Reliable. Selection of Methods a) based on the nature of the mAb and knowledge regarding the structure and heterogeneity of the reference product and biosimilar product, including those characteristics critical to product performance - capable of elucidating and comparing the Quality Attributes - evaluate the all (potential) MOAs, Structure/function relationships and clinical relevance - evaluate the Degradation/Stability profiles - evaluate Lot-to-lot variations b) State-of-the-art technologies should be used. c) Orthogonal methods should be used. - The methods used should separate and analyse different variants of product based upon different underlying chemical, physical and biological properties of protein molecules. (ref: WHO, Guidelines on Evaluation of Similar Biotherapeutic Products(SBPs), 2009) 40

10. Selection & Suitability of the Analytical Methods

Suitability of methods

- a) Analytical method capability impact the assessment of similarity. (ref: WHO, Guidelines on Evaluation of Similar Biotherapeutic Products (SBPs), 2009)
 - ⇒ should be able to discern potential structural and functional differences wherever possible.
 - ⇒ Knowledge of the analytical limitations of each technique used to characterize the product (e.g. limits of sensitivity, Resolving power) should be applied when determining similarity.
- b) Adequately qualified for intended use
 - \Rightarrow Sensitivity, sufficient Resolution and acceptable Intermediate Precision etc.
 - ⇒ Sample manipulation prior to analysis or analysis conditions can affect the results. (example: Concentrating sample can affect the properties of the protein leading to homodimerization)

Characterizati	ion studies	
Attributes	Potential effect	Examples of Analytical methods
1. Primary Structure		
Amino acid sequence	- Basic characterization of all effect - Should be identical to reference product	R Peptide mapping with UV and MS detection, MS/MS sequencing(HPLC-ESI-MS)
Terminal variants (C-terminal Lysine, N-terminal pyroglutamate)	 Heterogeneity C-terminal Lys : Generally no impact N-terminal pyroglutamate : No impact on biological function but may have influence on pharmacokinetics Impact on Mw and charge profiles 	Peptide mapping with MS and MS/MS Sequencing
Molecular Weight	- Heterogeneity due to PTMs and terminal mode	Peptide mapping with MS and MS/MS (Intact, Reduced and Deglycosylated)
Disulfide bond	-Disulfide bond is key contributor for conformation of structure	R/NR RP-HPLC-ESI-MS peptide mapping Ellman's assay(free thiol)

2. Post-translational	Imodification	
Deamidation		
somerization Dxidation Glycation	 May impact on biological functions or immunogenicity (Deamidation, Oxidation) May be immunogenic (IsoAsp etc) May impact on stability profile Impact on charge profile, glycan profile 	Ion exchange chromatography (CEX, IEX Boronate affinity chromatography HI-HPLC Peptide mapping with MS and MS/MS(HPLC-ESI-MS)
3. Higher order Stru	cture	
Higher order structure	-Folding linked to conformation of structure -Impact on target binding, biological function	Far/near-UV CD, FT-IR, hydrogen deuterium exchange (HDX)-MS DSC 1D/2D NMR, X-ray crystallography

Attributes	Potential effect	Examples of Analytical method
4. Glycosylatic	n	
Fucosylation Mannose X	Afucosylated variants lead to higher ADCC in some cases Mannose X variants lead to higher ADCC in some cases	Exoglycosidase digestion 2AB labelled-NP HPLC/UPLC and MS HILIC
High Mannose	 May increase serum clearance and impact on PK area under the curve (AUC) Potentially immunogenic 	ESI-MS MALDI TOF-MS
Galactosylation	- Higher galatosylation lead to higher CDC in some cases	CE-SDS Peptide mapping (UPLC and MS)
Galactose-α-1,3- galactose	- Potentially immunogenic (especially in Fab region : Type I hypersensitivity)	*N-linked Glycan : PNGaseF etc
Sialylation	- Higher sialylation leads to lower ADCC Weak Anion Ex	NP-HPLC Weak Anion Exchange Chromatography DMB labelled RP-HPLC and MS

Attributes	Potential effect	Examples of Analytical methods
5. Variants		
Size variants	 Aggregate form (and/or HMWS) may have less biological activity and also may be immunogenic Fragments/Cleavage may have less biological activity May impact on Stability profile 	R/NR SDS-PAGE, CE-SDS SEC FFF MALLS DLS AUC Particle characterization (HIAC, MFI)
Charge variants	 Arise from PTM or incomplete processing of C-terminal Lys Generally no impact on biological activity but some charge variants in critical region may influence on biological activity 	Ion-exchange chromatorgraphy (CEX, IEX), Gel & Capillary electrophoresis (IEF, icIEF) *Using Carboxypeptidase B
Hydrophobicity	- Influenced from aggregation	RPC, HIC
6. Process impu	rity	
Host cell proteins	- Adjuvant effect or complex formation - May be immunogenic (may have an adverse impact upon Safety)	ELISA, 2-D electrophoresis, LC-MS
Host cell DNA	- May have an adverse impact upon Safety	Q-PCR

11. Quality Attributes vs Analytical Methods

Attributes	Structural element	Examples of Analytical methods
7. Biological Functio	'n	·
Binding to target	Fab	ELISA, SPR, FRET Cell-based binding assay
Programmed cell death, Neutralization assay	Fab	Cell-based apoptosis assay Reporter gene assay
Fc-effector function	Fc : FcyR binding	SPR, FRET, Alphascreen Cell-based binding assay
	Fc : C1q binding	SPR, ELISA
	Fab & Fc ; ADCC, CDC	Cell-based ADCC assay, Cell-based CDC assay
PK	Fc : FcRn binding	SPR, Alphascreen

(see also Appendix II, 'F. ADCC : Physiological system & Exaggerated system', 'G. CDC' and 'H. Allotype of Fc gamma Receptors')

(ref: Schiestle M, 2015 AHC Biotherapeutics Workshop with modification by KIM JA)

Attributes	Structural element	Examples of Analytical methods
8. General propertie	S	
Protein Content	- according to pharmaceutical design (strength)	UV 280, HPLC
Extinction coefficients	- An intrinsic property of the product - Not expected to have lot-to-lot variation	Amino acid analysis
Volume, appearance etc	According to pharmaceutical design (strength etc)	Volume in container

11. Quality Attributes vs Analytical Methods

Attributes	Potential effect	Examples of Analytical methods	
High Temperature	- Denaturation, Aggregation, Fragmentation	CQA and/or Stability-indicating items	
_ight Photostability)	- Denaturation, Aggregation, Fragmentation	CQA and/or Stability-indicating items	
Low pH	- Denaturation, Aggregation, Fragmentation	CQA and/or Stability-indicating items	
High pH	- Deamidation (Usually Lysine residues), etc.	CQA and/or Stability-indicating items, Peptide mapping with MS and MS/MS Sequencing (ID of deamidated residues)	
H2O2	Oxidation (Usually Methionine residues) May influence on pharmacokinetics (Dependant on the region of oxidated sites)	CQA and/or Stability-indicating items, Peptide mapping with MS and MS/MS Sequencing (ID of oxidated residues)	
Addition of metal ion catalysts (Fe2+ or Cu2+ etc.)	 May be relevant in formulations and manufacturing process, etc. May lead to oxidation 	CQA and/or Stability-indicating items	

(ref: Schiestle M, 2015 AHC Biotherapeutics Workshop with modification by KIM JA)

49

12. Analytical Comparability Assessment

Considerations for analytical comparability program

- a) Cumulative knowledge of reference products on the market helps to understand range and variability of the innovator manufacturing process.
- b) Comprehensive Analytical Comparability Studies
 - Extensive Characterization studies and Forced-degradation studies
- c) The rationale for the analytical similarity assessment should be clearly described.
- known quality attributes and performance characteristics of the RP (US FDA, Guidance, Quality Considerations in Demonstrating Biosimilarity of a Therapeutic Protein Product to a Reference Product, 2015)
- d) Age of sample at the time of testing should be factored when comparing stabilityindicating attributes.
- e) Analytical differences should be characterized through orthogonal methods, and should have no clinically meaningful impact on safety and efficacy of biosimilars.

50

12. Analytical Comparability Assessment

□ Requirements of the batch to be analyzed

- a) Similarity assessments should be performed for **to-be-commercial batches of biosimilar**.
- b) predominately analyzed in Drug Product lots, but certain parameters can be analyzed in Drug Substance lots (DS lots should be representative for DP lots appropriately).
 - quality attributes specific to drug product : protein concentration, volume,
 - sub-visible particles and stability/degradation products
 - quality attributes specific to drug substance : glycosylation profile, ADCC, CDC etc.
- c) Elements of the to-be-commercial include:
 - Representative scale
 - Same unit operations and same critical raw materials for non-clinical, clinical and commercial batches

51

12. Analytical Comparability Assessment □ Extensive Characterization Studies (Structural, physicochemical, biological characterization studies) a) Compared with Reference product Side-by-side characterization : minimize the interference of the interpretation of results ⇒ especially important for analytical methods which do not have high 'intermediate precision' or for assays where an internal standards should be tested simultaneously etc. Independent data comparisons from multiple assays in a collective manner ⇒ especially important for methods that have higher 'intermediate precision' b) Use state-of-the-art/orthogonal techniques c) Evaluate the All (potential) MOAs

52

12. Analytical Comparability Assessment

□ Forced Degradation Studies

- a) Under defined stressed conditions, degradation/stability profile should be similar.
 (i.e. similar degradation pathway, no new degradants...)
- b) It is important to set the various and appropriate degradation conditions and select analytical methods to monitor the CQA affected.
- c) Consider ages of Biosimilar and Reference product.

(see also Appendix II, 'D. Example of Analytical Comparability Assessment')

12. Analytical Comparability Assessment

□ Acceptance Similarity Criteria

- a) The acceptance similarity criteria and justifications should be provided.
- b) Quantitative ranges should be based primarily on the measured quality attribute ranges of the reference product and should not be wider than the range of the variability of the representative reference product batches, unless otherwise justified.
 - taking into account the number of reference medicinal product lots tested, the quality attribute investigated, the age of the batches at the time of testing and the test method used.(*ref: EMA, Guideline on similar biological medicinal products Guideline containing biotechnology-derived proteins as active substance: quality issues, 2014*)
- c) Number of batches depends on assay and batch variability.
- d) A **descriptive statistical approach** to establish ranges for quality attributes could be used, if **appropriately justified**. (*ref: EMA, Guideline on similar biological medicinal products Guideline containing biotechnology-derived proteins as active substance: quality issues, 2014*)

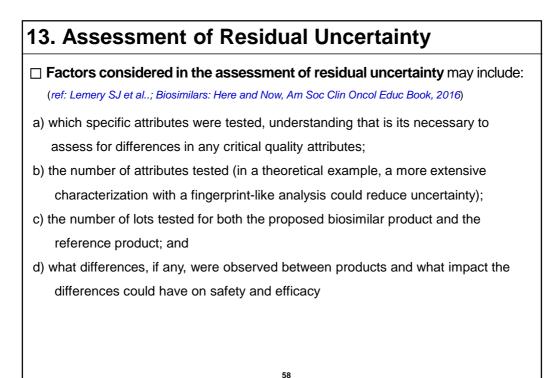
(see also Appendix II, 'E. Acceptance Similarity Criteria and Statistical Approaches')

12. Analytical Comparability Assessment

- Possible statistical solutions
- a) Pros and Cons
 - Advantage: Provide a consistent decision-rule for all biosimilar submissions
 - Disadvantage/challenge: Statistical equivalence test for analytical biosimilarity assessment is challenging due to limited sample sizes and lack of scientific knowledge of the equivalence margins.
- b) Statistical approach used should be justified.
- c) Example
- 2 or 3 standard deviation (mean±2SD or 3SD), Tolerance Interval, Equivalence testing
- 3-tiered approach (US FDA's current thinking; ref: Tsong Y, DIA/FDA statistics Forum 2015 etc.)

(see also Appendix II, 'E. Acceptance Similarity Criteria and Statistical Approaches')

12. Analytical Comparability Assessment


- □ Quality attribute values which are outside or between the range(s) determined for a quality attribute of the reference medicinal product should be appropriately justified with regard to their potential impact on safety and efficacy.
- It should also be noted that there is no regulatory requirement for re-demonstration of biosimilarity once the Marketing Authorisation is granted.

(ref: EMA, Guideline on similar biological medicinal products containing biotechnology-derived proteins as active substance: quality issues, 2014)

13. Assessment of Residual Uncertainty

□ Not-similar results ('Not-identical', 'Different', 'No equivalent' etc.)

- a) Need more data to demonstrate no effect on safety, purity, and potency.
- b) Justifications of Differences
- additional studies (orthogonal methods, additional batches), relevant literatures etc.
- c) The more comprehensive and robust data will reduce the degree of uncertainty.

14. Analytical comparability and Potential impact on Extrapolation
For extrapolation, the structural elements relevant to immunogenicity and to the mechanism(s) of action in the different indications are especially important . (ref: Supporting biosimilarity and extrapolation, GABI Journal, vol 4 (4), 2015)
 Potential clinical impact of quality attributes a) efficacy b) pharmacokinetics c) immunogenicity (which remains the main reason of clinical studies) d) safety/toxicity : pharmacological toxicity (biological activities) & off-target toxicity (rare with biologicals since they are highly specific to their target)
 Extrapolation of data is already an established scientific and regulatory principle that has been exercised for many years, for example, in the case of major changes in the manufacturing process of originator biologicals. (ref: Weise M et al, Biosimilars: the science of extrapolation, Blood 124, 3191-3196, 2014)
 For more details of principles of the extrapolation of indications, refer to the Reflection Paper on Extrapolation of Indications in Authorization of Biosimilar Products. (ref: Reflection Paper of IRPF BWG, 2017)

15. Summary

□ The similar-but-not-identical paradigm

- a) Microheterogeneity is not specific to biosimilars; it is a 'normal' feature of any biologicals. (*ref: Schneider CK, Biosimilars in rheumatology: the wind of change, Ann Rheum Dis* 72 (3), 315-318, 2013)
- b) The resulting biosimilar and the reference product can technically not be entirely identical, because biosimilar developers have to establish their own independent manufacturing process . (*ref: Weise M, Biosimilars: the science of extrapolation, Blood 124,* 3191-3196, 2014)

□ Foundation vs supporting data to demonstrate Similarity

a) Comparative analytical data provide the foundation for a biosimilar development program and can influence decisions about the type and amount of animal and clinical data needed to support a demonstration of biosimilarity.

15. Summary

Understanding CQA

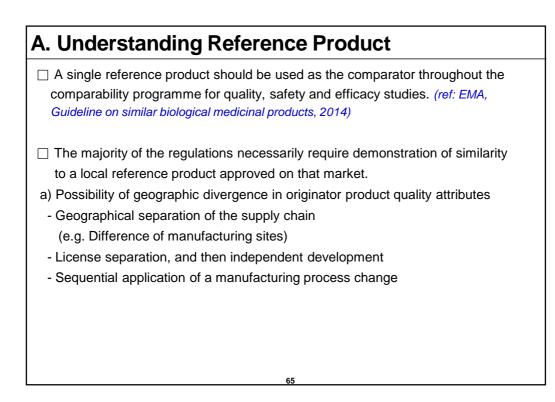
- a) Biosimilar should be highly similar to the reference product in all clinically relevant quality attributes, ie product attributes that may impact clinical performance. (*ref: WHO, Guidelines on Evaluation of Similar Biotherapeutic Products (SBPs), 2009*)
- b) That means all critical quality attributes (i.e. those important for the function of the molecule) must be comparable. (*ref: EMA, Guideline on similar biological medicinal products containing biotechnology-derived proteins as active substance: quality issues, 2014*)
- □ Analytical comparability assessment using state-of-the-art analytical tools
- a) Thorough characterization of both reference product and biosimilar should be

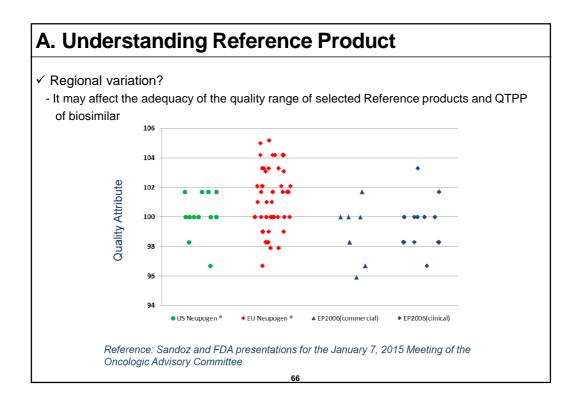
carried out using appropriate, state-of-the-art biochemical, biophysical and biological analytical techniques. (*ref: WHO, Guidelines on Evaluation of Similar Biotherapeutic Products (SBPs), 2009*)

b) Meaningful assessment depends on the capabilities of available state-of-the-art analytical assays. (ref: US FDA, Guidance, Quality Considerations in Demonstrating Biosimilarity of a Therapeutic Protein Product to a Reference Product, 2015)

15. Summary

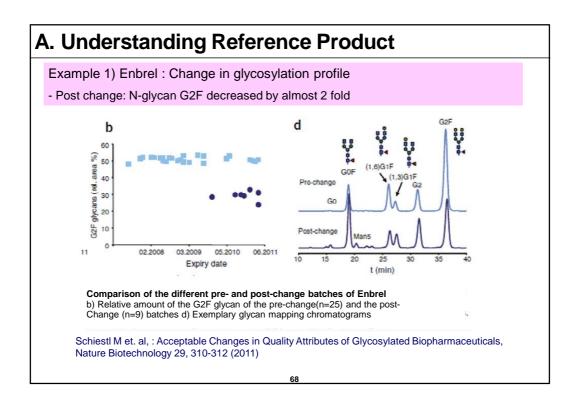
□ Potential impact on extrapolation

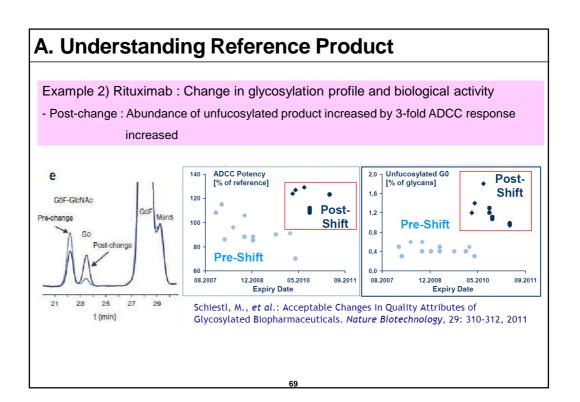

a) Thus, a biosimilar with highly similar structure, chemical, physical and biological attributes would be expected to produce the same pharmacology and thus highly similar safety and efficacy as the reference in every clinical indication. (*ref: Gerrard TL etc., Biosimilars: extrapolation of clinical use to other indications, GABI Journal, 4(3), 2015*)

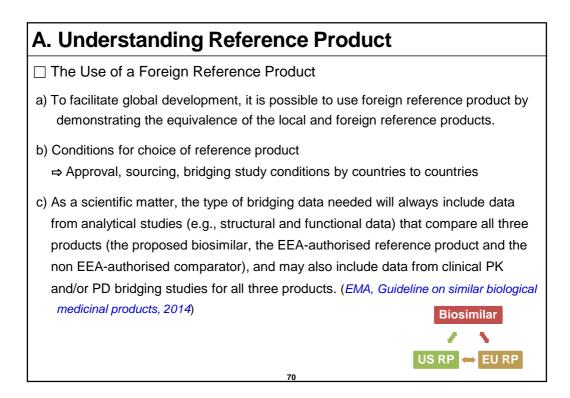

62

IV. Appendix 1

- Additional Information


Contents				
IV. Appendix 1 : Additional Information				
Α.	Understanding Reference Product 65			
В.	Differences of Producing cell lines 73			
C.	Differences of Formulation 79			
D.	Example of Analytical Comparability Assessment 81			
E.	Acceptance similarity criteria and Statistical approaches 91			
F.	ADCC : Physiological system & Exaggerated system 96			
G.	CDC 98			
H.	Allotype of Fc gamma Receptors 99			
I.	Relevant Guidelines 102			
J.	List of Abbreviations 105			





A. Understanding Reference Product

- □ Shifts in quality profile of Reference Product
- a) Such events could occur during the development of a biosimilar medicinal product and may result in a development according to a QTPP which is no longer fully representative of the reference medicinal product available on the market. (*ref: EMA, Guideline on similar biological medicinal product—Quality issues, 2014*)
- b) The ranges identified before and after the observed shift in quality profile could normally be used to support the biosimilar comparability exercise at the quality level, as either range is representative of the reference medicinal product. (*ref: EMA, Guideline on similar biological medicinal product—Quality issues, 2014*)
- c) Data from pre- and post- change batches should be clearly highlighted and separated in the dossier.
 - < Batch-to-Batch variation and Shift in quality profile to Reference Product !! >

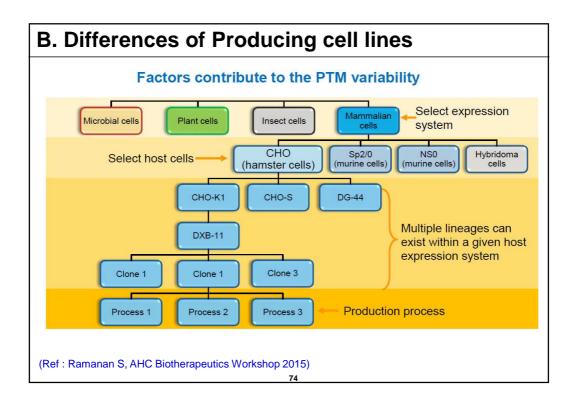
A. Understanding Reference Product

□ The Use of a Foreign Reference Product

d) Issues that a sponsor may need to address to use a non-US-licensed comparator product in a biosimilar development program include, but are not limited to, the scientific bridge between the non-US-licensed comparator product and the USlicensed reference product, including comparative physicochemical characterization, biological assays/functional assays, degradation profiles under stressed conditions, and comparative clinical PK and, when appropriate, PD data, to address the impact of any differences in formulation or primary packaging on product performance. (*ref: US FDA, Guidance, Quality Considerations in Demonstrating Biosimilarity of a Therapeutic Protein Product to a Reference Product, 2015*)

A. Understanding Reference Product

- ✓ Example of CT-P13 (Remsima ®/Inflectra ®)
- a) MFDS (Republic of Korea) had recommended :
- Demonstrate the Comprehensive analytical similarity between CT-P13, US-licensed Remicade and EU-approved Remicade.
- \Rightarrow CELLTRION : submission of a 3-way analytical bridging data

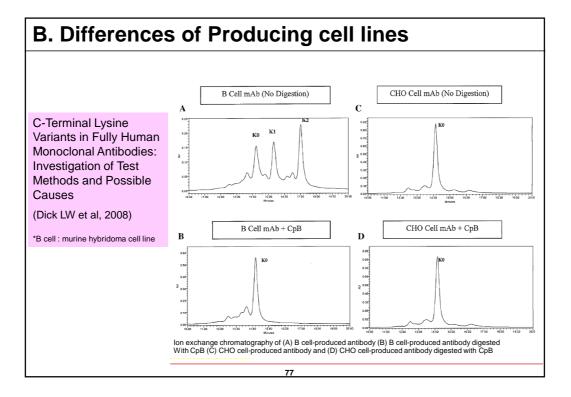

b) US FDA provided the following recommendations :

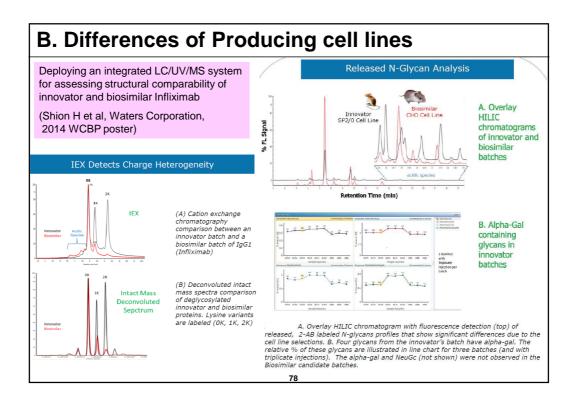
- Demonstrate PK similarity between CT-P13, US-licensed Remicade and EU-approved Remicade based on the following PK variables (AUCinf, Cmax and AUClast).
- Assess safety and immunogenicity in the setting of patients who undergo a single transition from EU-approved Remicade to CT-P13 to provide a descriptive comparison with patients who continue on EU-approved Remicade.
- \Rightarrow CELLTRION : submission of a 3-way analytical bridging data and

a 3-way clinical PK Study

72

B. Differences of Producing cell lines * i.e. Difference of Host Cell Line and Expression System □ Allows for the Use of different expression system that provide similar quality attributes and have equal or better safety and efficacy profile. Can result in the various type and degree of PTM, which may impact on Potency and Immunogenicity. a) Glycosylation patterns can vary significantly between different host cell types. b) Especially non-human glycan types can generate immunogenic reactions. ✓ Two critical differences have been identified between humans and most other mammals: humans have lost the ability to biosynthesize both the terminal Gal•1-3Galb1-(3)4GlcNAc (alpha-Gal) epitope, and a major mammalian sialic acid, N-glycolylneuraminic acid (Neu5Gc), structures that are widely present on non-human mammalian cells (Padler-Karavani and Varki, 2011) ✓ Normal humans have antibodies directed against these structures c) Affect the types and levels of process/product-related substances and impurities. Therefore choice of expression system for biosimilar needs careful consideration including the impact on clinical effects of reference product.


B. Differences of Producing cell lines


- ✓ Example (1) : Cetuximab (Erbitux®)
- Chimeric Mab expressed in Sp2/0 myeloma cells
- Murine cell lines express both Neu5Gc and alpha-Gal, similar to CHO and other mammalian cell lines, but at considerably higher levels. (*Muchmore EA et al, 1989*)
- Thus, therapeutic glycoproteins produced in murine cell line are more likely to be immunogenic.
- Both Neu5Gc and alpha-Gal have been described as part of an additional N-glycan in the Fab fragment of the Mab. (*Qian J et al, 2007*)
- The alpha-Gal epitope on Cetuximab has been shown to induce anaphylaxis in patients triggered by pre-existing anti-Gal IgE antibodies. (*Chung CH et al, 2008*)

B. Differences of Producing cell lines

- ✓ Example (2) : Reference product from Sp2/0 ⇒ Biosimilar from CHO
- Closely related systems but, CHO has even better safety track record.
- CHO cell and Sp2/0 can show the differences in C-terminal lysine variants and glycosylation pattern, but these differences have been reported that do not impact significantly on efficacy, safety and pharmacokinetics.
- C-terminal lysine : lower levels in the CHO (Dick LW et al, 2008)
 - ⇒The removal of the carboxy-terminal lysine from the heavy chains is routinely observed upon the characterization of monoclonal antibodies and is caused by intracellular enzymes.
 ⇒From a regulatory aspect, this 'lysine clipping' is not regarded as critical under the condition that a potency assay is available that proofs the quality of the mAb. (Bernhard A et al, 2007)
- Murine cell lines express both Neu5Gc & alpha-Gal, similar to CHO and other mammalian cell lines, but at considerably higher levels. (*Muchmore EA et al, 1989*)
 - ⇒ Thus, therapeutic glycoproteins produced in murine cell line are more likely to be immunogenic.
- Murine cell lines show higher sialylation compared to CHO cells. (Byme B et al, 2007; Yoo EM et al, 2002) ⇒ May or may not impact on PK.

C. Differences of Formulation Biosimilar product should be a pharmaceutically acceptable product and achieve the similarity to the Reference Product. a) The formulation of the biosimilar does not need to be identical to that of the reference product, but Need to match Stability Profile. - no new degradation species - similar trend and levels of degradation species under the same conditions b) Analyze the stability-indicating data and impurity data by considering the effects of similarity assessment. ✓ Regardless of the formulation selected, the suitability of the proposed formulation with regards to stability, compatibility (i.e. interaction with excipients, diluents and packaging materials), integrity, activity and strength of the active substance should be demonstrated. If a different formulation and/or container/closure system to the reference medicinal product is selected (including any material that is in contact with the medicinal product), its potential impact on the efficacy and safety of the biosimilar should be appropriately justified. (ref: EMA, Guideline containing biotechnology-derived proteins as active substance: quality issues, 2014)

C. Differences of Formulation

- □ Formulation differences can have huge effects on the stability profile and which types of new impurities form on stability.
- a) Many types of non-enzymatic reactions occur spontaneously and generally the rates are affected by pH and temperature (deamidation, oxidation, glycation etc.).
- b) Impurities to be created are often formulation dependant and can be affected by concentration or choice of excipients/surfactants (aggregate, fragment, unfolded proteins etc.).
- □ To consider of the effects from the formulation differences, identify the types of tests or data that should be focused on to confirm similarity in stability.
- a) The differences of purity/impurity measurements may be observed between Reference products and Biosimilar products.
- b) Consider the appropriate conditions for comparative forced-degradation studies. (High Temperature, Light, Low/High pH, Oxidation by H2O2 and/or metal ions etc.)

80

•		Acceptance crite	•	iaht			
Properties	Attribute	Test Method	No of Lots (RP/Similar)	Similarity Acceptance Criteria	Result	Conclusion	Method suitability
	Amino acid Composition	Hydrolysis and HPLC	3/3	within the variability of method	Similar	Acceptable	Cal (Side-by-side
	Amino acid sequence	Peptide mapping by HPLC	3/6	Identical profile to the RBP	Identical	Acceptable	Cal (Side-by-side
	Amino acid sequence	Amino acid sequencing by LC-ESI-MS/MS	3/6	Identical to the RBP	Identical	Acceptable	Cal (Side-by-side
Primary Structure	N/C-terminal sequence	N/C-terminal sequencing by peptide mapping (LC-MS), Edman degradation	3/6	Identical to the RBP	Identical	Acceptable	Cal (Side-by-side
	Molecular mass	SDS-PAGE, MALDI-TOF, ESI-QTOF-MS	3/6	within ± X%(ppm) of the predicted MW Or Identical to the RBP	Similar	Acceptable	Cal (Side-by-side
* Abbrev		ual. thod suitability, al : Qualification, Ca		00		1	1
vai. V							

•	Methods a		-				
(Z) PC	Ost-trans	Test Method	No of Lots (RP/Similar)	Similarity Acceptance Criteria	Result	Conclusion	Method suitability
	N/C-terminal heterogeneity	LC-MS	10/6	within the variability of method	Not Similar -Difference of the level of C-term Lys - Only detected the specific N-term variant in Biosimilar	Orthogonal discussion (charge profile, functional testing etc), Additional batches, Literatures \Rightarrow No clinical impact \Rightarrow Acceptable	Cal (Side-by-side
PTMs	Oxidation	LC-MS	10/6	Identical profile to the RBP	Not Similar -Difference of the level at some sites	Orthogonal discussion (Forced degradation studies, functional testing etc), Additional batches, Literatures \Rightarrow No clinical impact \Rightarrow Acceptable	Qual/Cal (Side-by-side
	Deamidation	LC-MS	10/6	Identical to the RBP	Not Similar -Difference of the level at some sites	Orthogonal discussion (Forced degradation studies, functional testing etc), Additional batches, Literatures ⇒ No clinical impact ⇒ Acceptable	Qual/Cal (Side-by-side
	Glycation	LC-MS	10/6	Identical to the RBP	Identical	Acceptable	Cal (Side-by-sid

		n <mark>d Acceptanc</mark> er Structure)			
Properties	Attribute	Test Method	No of Lots (RP/Similar)	Similarity Acceptance Criteria	Result	Conclusion	Method suitability
	Secondary structure	UV absorption	3/3	Similar profile	Similar	Acceptable	Cal/SST (Side-by-side)
	Secondary/ Tertiary Structure	Far/Near-UV CD	3/3	Similar profile	Similar	Acceptable	Cal/SST (Side-by-side)
	Secondary structure	FT-IR	3/3	Similar profile	Similar	Acceptable	Cal/SST (Side-by-side)
Higher Order	Secondary structure	DSC	3/3	Similar profile	Similar	Acceptable	Cal/SST (Side-by-side)
Structure	Secondary structure	HDX	3/3	Similar profile	Similar	Acceptable	Cal/SST (Side-by-side)
	Disulfide linkage Structure	Peptide mapping/ LC-MS	3/6	Identical to the RBP	Identical	Acceptable	Cal (Side-by-side)
	Free thiol	Thiol assay kit	3/6	Similar to the RBP	Not similar	But, Very low level in Biosimilar and Reference product) (< 1 mol/mol) Acceptable	Qual/Cal (Side-by-side)

-	ethods and A /cosylation	cceptanc	e criteria)			
Properties	Attribute	Test Method	No of Lots (RP/Similar)	Similarity Acceptance Criteria	Result	Conclusion	Method suitability
	N-linked glycosylation site	LC-MS	3/6	Identical to the expected site	Identical	Acceptable	Cal (Side-by-side
	N-glycan structure	HPLC-MS, UPLC-MS	30/10	T-sided TI, Or Mean±3SD	Identified, similar	Acceptable	Cal (Side-by-side
Glycosyl- ation	N-glycan profile (%Afucosylated/ %G0F/%G1F/%G2F/ %High Man)	HPLC (2-AB), HILIC	30/10	T-sided TI, Or Mean±3SD	NOT similar -different of relative areas of some glycan species	Orthogonal discussion (charge profile, functional testing etc), Additional batches, Literatures ⇒ No clinical impact ⇒ Acceptable	Val/Qual
	Sialic acid	HPLC (DMB), LC-MS	30/10	T-sided TI, Or Mean±3SD	NOT similar	Orthogonal discussion (charge profile, functional testing etc), Additional batches, Literatures ⇒ No clinical impact ⇒ Acceptable	Val/Qual

•		ind Accept eterogene		teria)			
Properties	Attribute	Test Method	No of Lots (RP/Similar)	Similarity Acceptance Criteria	Result	Conclusion	Method suitability
	Charge isoforms	IEF	30/10	Similar pI range, Similar band pattern	NOT similar -difference of band pattern (basic or acidic shift etc)	Orthogonal discussion (peak ID, functional testing etc), Additional batches, Literatures ⇒ No clinical impact ⇒ Acceptable	Val
Charge Hetero- geneity	Charge Profile (%acidic/ %main/ %basic)	IEX, icIEF (with CpB)	30/10	T-sided TI, Or Mean±3SD	NOT similar -difference of relative amount of charge variants	Orthogonal discussion (peak ID, functional testing etc), Additional batches, Literatures ⇒ No clinical impact ⇒ Acceptable	Val
-	Charge Profile (%acidic/ %main/ %basic)	IEX, icIEF (without CpB)	30/10	T-sided TI, Or Mean±3SD	NOT similar -difference of relative amount of charge variants	Orthogonal discussion (peak ID, functional testing etc), Additional batches, Literatures ⇒ No clinical impact ⇒ Acceptable	Val

(6) Si	ze Hetei	rogeneity					
Properties	Attribute	Test Method	No of Lots (RP/Similar)	Similarity Acceptance Criteria	Result	Conclusion	Method suitability
	Size distribution (%main/%HM WS/%LMWS)	HPLC(SEC)	30/10	1 Similar profile 2 T-sided TI, Or Mean±3SD	NOT similar -difference of relative amount of minor isoforms	Orthogonal discussion (peak ID, functional testing, stability profile etc), Additional batches, Literatures \Rightarrow No clinical impact \Rightarrow Acceptable	Val
Size Hetero- geneity	Size distribution (%main/%HM WS/%LMWS)	CE-SDS(R/NR), SDS-PAGE(R/NR)	30/10	1 Similar profile 2 T-sided TI, Or Mean±3SD	NOT similar -difference of relative amount of minor isoforms	Orthogonal discussion (peak ID, functional testing, stability profile etc), Additional batches, Literatures \Rightarrow No clinical impact \Rightarrow Acceptable	Val
	HMWS profile	SV-AUC	6/6	 Similar profile Report results 	similar (All dimer)	Acceptable	Qual/SST (Side-by-side
	HMWS profile	SEC-MALS	6/6	 Similar profile Report results 	similar (All dimer)	Acceptable	Qual/SST (Side-by-side

•	ethods and Ac ditional Physi	-		teristics			
Properties	Attribute	Test Method	No of Lots (RP/Similar)	Similarity Acceptance Criteria	Result	Conclusion	Method suitability
	Determination of extinction coefficient	Amino acid analysis	6/6	N/A (Similar estimated values)	Similar	Acceptable	Qual/SST (Side-by-side)
Biophysical analysis	Sub-visible particles	MFI	30/10	N/A	Similar	Acceptable	Val/SST (Side-by-side)
	Protein concentration	UV/VIS at A280	30/10	T-sided TI, Or Mean±3SD	Similar	Acceptable	Val/SST
		Courtesy of John Carp	enter, Univ Colorado 100nm	ates and Particles 1μm 10μm 100μ or Micro-flow Imaging	um ┿→		

(Methods and Acceptance criteria) (8) Biological activities : Fab-related							
Properties	Attribute	Test Method	No of Lots (RP/Similar)	Similarity Acceptance Criteria	Result	Conclusion	Method suitability
Biological activity	Target binding (soluble target)	SPR, ELISA, FRET, Alpha screen	30/10	T-sided TI, Or Mean±3SD	Similar	Acceptable	Qual/Cal (Side-by-side
(Fab -related)	Target binding (membrane-bound)	FACS, Cell based ELISA	30/10	T-sided TI, Or Mean±3SD	Similar	Acceptable	Qual/Cal (Side-by-sid
	Potency assay	Neutralization assay etc.	30/10	T-sided TI, Or Mean±3SD	Similar	Acceptable	Qual/Cal (Side-by-sid
				Or Mean±3SD			(Side-by-

		l Acceptance crit tivities : Fc-rela					
Properties	Attribute	Test Method	No of Lots (RP/Similar)	Similarity Acceptance Criteria	Result	Conclusion	Method suitability
	FcrR binding	ELISA, SPR, Alpha screen	30/10	T-sided TI, Or Mean±3SD	Similar	Acceptable	Qualification (Side-by-side)
Biological Activity	ADCC	ADCC assay -PBMC assay -modified NK cell assay -Reporter gene assay	30/10	T-sided TI, Or Mean±3SD	Similar	Acceptable	Qual/Cal (Side-by-side)
(Fc- Related)	C1q binding	ELISA	30/10	T-sided TI, Or Mean±3SD	Similar	Acceptable	Qual/Cal (Side-by-side)
	CDC	CDC assay	30/10	T-sided TI, Or Mean±3SD	Similar	Acceptable	Qual/Cal (Side-by-side)
	FcRn binding	ELISA, SPR	30/10	T-sided TI, Or Mean±3SD	Similar	Acceptable	Qual/Cal (Side-by-side)

,	ods and Acceptar	,	of Stability Profiles		
	ding Forced De		•		
Attribute	Test Method	No of Lots (RP/Similar)	Similarity Acceptance Criteria	Result	Conclusion
	real-time/real- temperature (5±3°C)	3:3	No new degradants, Similar stability profile	Similar	Acceptable
Stability Profile	accelerated (25±2°C/60±5%RH)	3:3	No new degradants, Similar stability profile	Similar	Acceptable
	stress conditions (40±2°C/75±5%RH)	3:3	No new degradants, Similar stability profile	Similar	Acceptable
	Photo-stability	1:1	No new degradants, Similar degration profile	Similar	Acceptable
Forced Degradation	Low pH	1:1	No new degradants, Similar degradation profile	Similar	Acceptable
Studies	High pH	1:1	No new degradants, Similar degradation profile	Similar	Acceptable
	Oxidation (H2O2 etc)	1:1	No new degradants, Similar degradation profile	Similar	Acceptable

E. Acceptance Criteria and Statistical approaches

- Qualitative comparison by side-by-side manner
- a) amino acid sequence, S-S linkage, peptide mapping profile, IEF profile etc.
- □ **Quantitative ranges** should be established for the biosimilar comparability exercise, where possible. *(ref: EMA, Guideline containing biotechnology-derived proteins as active substance: quality issues, 2014)*
- a) should be based on data from testing of a sufficient number of Reference product batches.
- b) using statistical approach (The statistical approach used should be justified.)
- Advantage: Provide a consistent decision-rule for all biosimilar submissions.
- Disadvantage/challenge: Statistical equivalence test for analytical biosimilarity assessment is challenging due to limited sample sizes and lack of scientific knowledge of the equivalence margins.
- □ The Number of biosimilar batches for Comparability
- a) The higher the number, the better the analysis.
- b) Be considered to achieve appropriate confidence interval.

E. Acceptance Similarity Criteria and Statistical approaches

□ Examples of Quantitative Range

<u>1. Min-Max</u>: range defined by the minimum value & maximum value of the reference product lot measurements

2. Mean±X Standard Deviation (±2SD or ±3SD etc.)

a) based on the Reference lots

b) Usually easy to apply and be consistent with quality control principle.

c) Should consider the method variability.

- d) If data are normally distributed then simply a number of coverage intervals may be expressed as follows. (*NIST/SEMATECHe-Handbook*)
- \pm 1SD interval around the mean has coverage of 67% of total data
- ± 2 SD interval around the mean has coverage about 95% of total data
- ± 3 SD interval around the mean has coverage of about 99.7% of total data
- These percent coverages are true only when population mean and SD are known
- e) If sample size is big enough, $\pm 3\text{SD}$ and TI with 99.7 % coverage are close to each other.

92

E. Acceptance Similarity Criteria and Statistical approaches

3. Tolerance Interval

- a) An interval that contains a certain proportion of the data population with a specified degree of confidence.
- At least a certain proportion (p) of the population falls with a given level of confidence $(1-\alpha)$.
- b) If the data normally distributed, the two-sided TI can be determined by using the following equation.

(*Howe, 1969*): - Mean±k⋅s

$$k = Z_{(1-p)/2} \sqrt{\frac{N-1}{\chi^2_{(\gamma,N-1)}}} \sqrt{1 + \frac{1}{N}}$$

s : standard deviation

k : multiplier to adjust the width of the interval defined

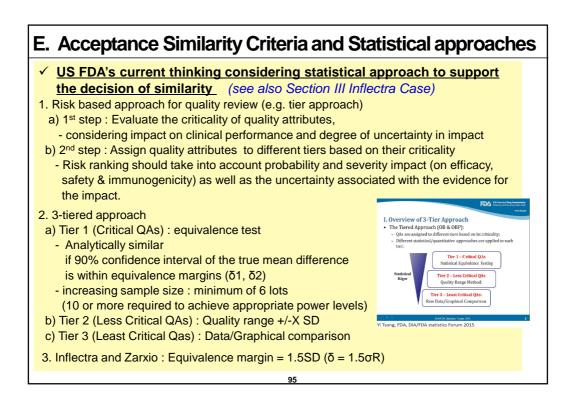
N : sample size that was used to estimate the mean and SD)

 $\chi_{(\gamma,N-1)}$: the critical value of the chi-square distribution with degrees of freedom N-1 that is exceeded with probability *r*

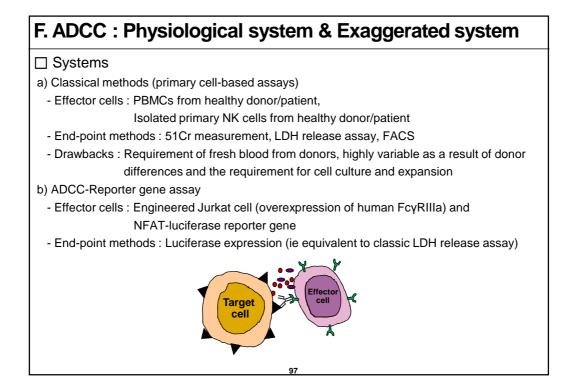
 $Z_{(1-p)/2}$: the critical value of the normal distribution which is exceeded with probability (1-p)/2

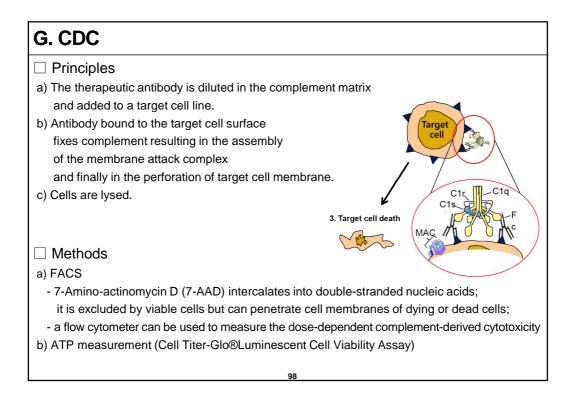
- c) The width of the TI is dependent upon the sample size, confidence level, and coverage level.
- d) Considering the uncertainty associated with such a small data set, TI with an appropriate confidence level would be the recommended statistical method.
- e) example : Two-sided/One-sided TI with 95 % confidence level/95 % population (95/95 TI), N=35

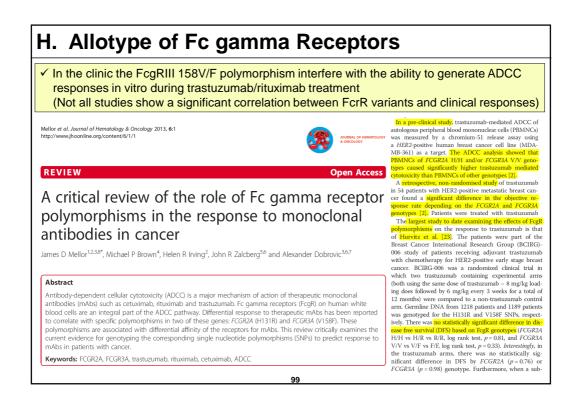
- Two-sided (*Howe, 1969*) : k = ± 2490


- One- sided (Hatrella, 1963) : k = \pm 2157

E. Acceptance Similarity Criteria and Statistical approaches


4. Equivalence Testing

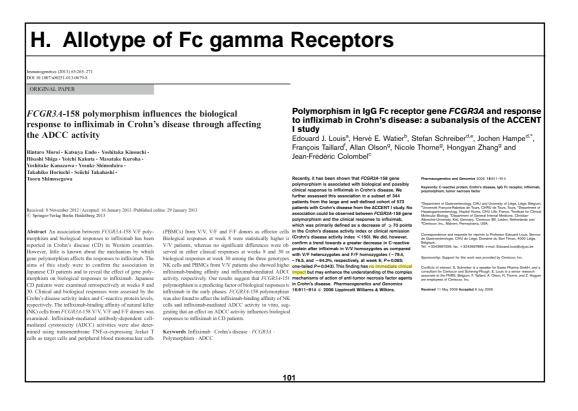

a) If Inferential statistics is used, testing for equivalence should generally be applied.

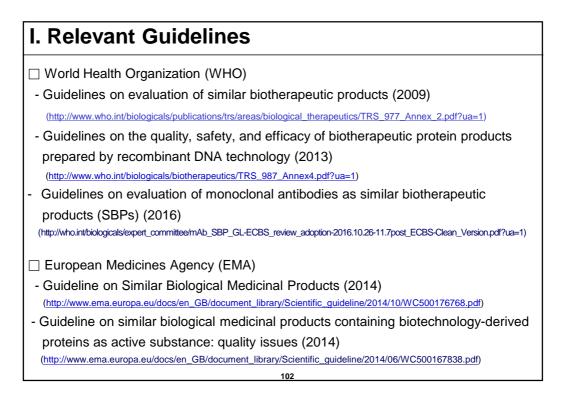

- b) Equivalence margin is determined prior to experimentation using confidence level and power.
- c) Equivalence margin interrelates strongly to sample sizes, allowable difference, significance level and power.
- d) Assess if the mean difference (and confidence interval on the mean difference) is within acceptable margin.
- Confidence interval is within the similarity limit => equivalent
- Two-sided test : upper limit and lower limit
- One-sided test could be acceptable for certain QAs (eg impurities)

F. ADCC : Physiological system & Exaggerated system
Principles of ADCC assay
 a) NK cells recognize their target cells via FcγRIIIa (CD16) that bind to antibody bound to the surface of the target cells.
 b) Binding of NK cells to their target cells induces the release of preformed cytotoxic mediators by granule exocytosis.
c) The lysis of the target cells is extracellular, requires direct cell-to-cell contact, and does not involve complement.
□ Factors impacting Sensitivity and its Relevance to physiological conditions
a) Target cells : expression of different levels of target ligand
b) Effector cells : PBMCs from healthy donor/patient,
Isolated primary NK cells from healthy donor/patient
c) Different E/T ratios
d) Presence or absence of autologous serum

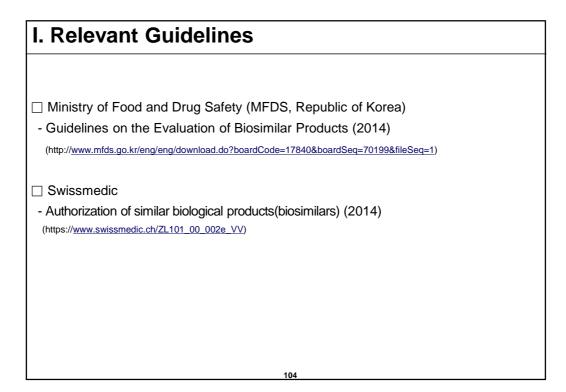
50

H. Allotype of Fc gamma Receptors

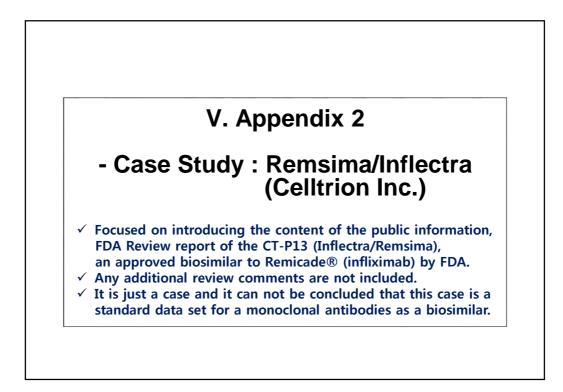

FcγRIIIa-158V/F Polymorphism Influences the Binding of IgG by Natural Killer Cell FcγRIIIa, Independently of the FcγRIIIa-48L/R/H Phenotype


By Harry R. Koene, Marion Kleijer, Johan Algra, Dirk Roos, Albert E.G.Kr. von dem Borne, and Masja de Haas

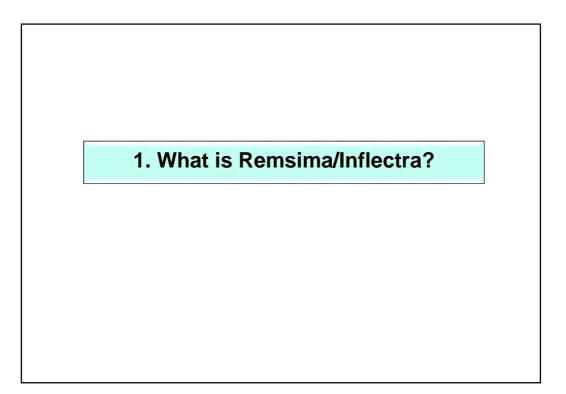
We analyzed a genetic polymorphism of $Fc\gamma$ receptor IIIa (CD16) that is present on position 158 (Phe or Val) in the membrane-proximal, IgG-binding domain. With a polymerase chain reaction-based allele-specific restriction analysis assay we genotyped 87 donors and found gene frequencies of 0.57 and 0.43 for $Fc\gamma RIIIA-158F$ and -158V, respectively. A clear linkage was observed between the $Fc\gamma RIIIA-158F$ and -48L genotypes on the one hand and the $Fc\gamma RIIIA-158V$ and -48H or -48R genotypes on the other hand (χ^2 test; P < .001). To determine the functional consequences of this $Fc\gamma RIIIA-158V/F$ polymorphism, we performed IgG binding experiments with natural killer (NK) cells from genotyped donors. All donors were also typed for the recently described triallelic $Fc\gamma RIIIA-48L/R/H$ polymorphism. NK cells were treated with lactic acid to remove cell-associated IgG. $Fc\gamma RIIIA^{NK}$.


158F bound significantly less IgG1, IgG3, and IgG4 than did Fcr{RIlla^NK-158V}, irrespective of the Fcr{RIlla-48 phenotype. Moreover, freshly isolated NK cells from Fcr{RIlla-158VV individuals carried significantly more cytophilic IgG than did NK cells from Fcr{RIlla-158FF individuals. In addition, CD16 monoclonal antibody (MoAb) MEM154 bound more strongly to Fcr{RIlla-158V, compared with -158F, again independently of the Fcr{RIlla-48 phenotype. The binding of MoAb B73.1 was not influenced by the Fcr{RIlla-158V/F polymorphism, but proved to depend solely on the amino acid present at position 48 of Fcr{RIlla. In conclusion, the previously reported differences in IgG binding among the three Fcr{RIlla-48Illa-158V/F polymorphism at amino-acid position 158. © 1997 by The American Society of Hematology.

100



I. Relevant Guidelines Food and Drug Administration (US FDA) - Scientific Considerations in Demonstrating Biosimilarity to a Reference Product (2015) (http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm291128.pdf) - Quality Considerations in Demonstrating Biosimilarity of a Therapeutic Protein Product to a Reference Product (2015) (http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm291134.pdf) Health Canada (HC) Information and Submission Requirements for Subsequent Entry Biologics (2010) : Under revision Pharmaceuticals and Medical Devices Agency (PMDA) - Guideline for the Quality, Safety and Efficacy Assurance of follow-on biologics (2013) (http://www.pmda.go.jp/files/000153851.pdf)



ADCC	Antibody Dependent Cell mediated Cytotoxicity
ADCP	Antibody Dependent Cell mediated Phagocytosys
BWG	Biosimilars Working Group
C dossier	Clinical dossier
CASSS Forum	Californian Separation Science Society Forum
CDC	Complement dependent Cytotoxicity
CMC	Chemistry, Manufacturing and Controls
CQAs	Critial Quality Attributes
DS	Drug Substance
EEA	European Economic Area
IBD	Inflammatory Bowel Disease
IPRF	International Pharmaceutical Regulators Forum
MOA	Mode of Action
NC dossier	Non-clinical dossier
NRA	National Regulatory Authority
PD	Pharmacodynamics
PK	Pharmacokinetics
PMS	Post Marketing Surveilance
PTM	Post Tnaslational modification
Q dossier	Quality dossier
QTPP	Quality Target Product Profile
RP	Reference Product
SD	Standard Deviation
WCBP symposium	Well Characterized Biotechnology Pharmaceuticlas symposium

Со	ntents
1. What is Remsima/Inflect	ra?
1.1. What is Remsima/Inflectra (CT	Г-Р13)? 110
1.2. Physicochemical and Function	nal Characteristics of CT-P13 - 111
2. The Strategy of Analytica	al Comparability Assessments
2.1. Summary	
2.1. Summary 2.2. Assessment Program	
2.1. Summary 2.2. Assessment Program	
2.1. Summary 2.2. Assessment Program	y of CT-P13 to US-licensed Remicade)
2.1. Summary2.2. Assessment Program(Determining analytical similarit)	
 2.1. Summary 2.2. Assessment Program (Determining analytical similarit 2.3. Analytical Techniques <+ Consid 	y of CT-P13 to US-licensed Remicade) leration 1 : MOA of Infliximab> 118 and Statistical analysis 123

Contents	
3. Detailed Results	
3.1. Primary Structure and Molecular Weight	152
3.2. Post-translational Modifications (except Glycosylation profile)	155
3.3. Higher Oder Structure	157
3.4. Glycosylation Profile	160
3.5. Charge Heterogeneity	165
3.6. Size Heterogeneity	168
3.7. Sub-visible particles, Protein content, Absorption Coefficient	
and Excipients	172
3.8. Biological Activities : Fab-related	173
3.9. Biological Activities : Fc-related	184
3.10. Evaluation of the Comparability of Stability profiles	
(Stability studies and Forced-degradation studies)	200

1.2. Physicochemical & Functional characteristics of CT-P13				
□ Active substance : inflximab (chimeric mAb against TNF-alpha, IgG1)				
Dosage form : Liquid, lyophilized powder, stored in 2~8°C <must be="" by="" regulatory="" requirement="" same=""></must>				
Route of administration : IV infusion <must be="" by="" regulatory="" requirement="" same=""></must>				
 Indications : Same to US-licensed Remicade Mechanisms of Action : binding and neutralization of soluble and transmembrane Tumor- Necrosis Factor Alpha (sTNFα and tmTNFα) <must be="" by="" regulatory="" requirement="" same=""></must> 				
Strength : 100 mg/vial < Difference is acceptable, But Same>				
Expression system: Sp2/0 < Difference is acceptable, But Same>				
Formulation : includes the same inactive ingredients as US-licensed Remicade <difference acceptable,="" but="" is="" same=""></difference>				
Container/Closure system : Type I Glass Vial <difference acceptable,="" but="" is="" same=""></difference>				
111				

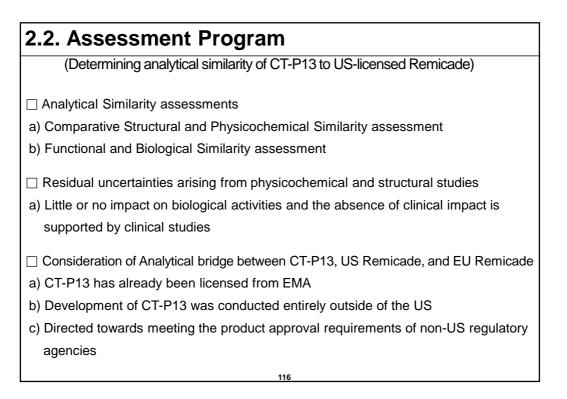
1.2. Physicochemical & Functional characteristics of CT-P13

Table 1. CT-P13 vs Remicade: Summary of Strength, Formulation, Presentation and Container Closure System

Component	Function	Reconstituted CT-P13	Reconstituted US Remicade	Reconstituted EU Remicade
Infliximab	Active pharmaceutical ingredient	10 mg/mL	10 mg/mL	10 mg/mL
Sucrose	Stabilizing agent	50 mg/mL	50 mg/mL	50 mg/mL
Monobasic sodium phosphate monohydrate	Buffering agent	0.22 mg/mL	0.22 mg/mL	0.22 mg/mL
Dibasic sodium phosphate dihydrate	Buffering agent	0.61 mg/mL	0.61 mg/mL	0.61 mg/mL
Polysorbate 80	Surfactant	0.05 mg/mL	0.05 mg/mL	0.05 mg/mL
Container closure	Container closure	20 mL Type I glass vial, butyl rubber stopper	20 mL Type I glass vial, butyl rubber stopper	20 mL Type I glass vial, butyl rubber stopper

2. The Strategy of

Analytical Comparability Assessments


2.1. Summary

Executive summary : Extensive analytical data intended to support,

- a) a demonstration that CT-P13 and US-licensed Remicade are highly similar,
- b) a justification of the relevance of comparative data generated using the EUapproved Remicade to support a demonstration of the biosimilarity of CT-P13 to US-licensed Remicade,
- c) a demonstration that CT-P13 can be manufactured in a well-controlled and consistent manner, leading to a product that is sufficient to meet required quality standards

2.1. Summary

- \Box The results of these comparisons,
- a) 3 products met the pre-specified criteria :
- analytical similarity, statistical criteria for the critical potency bioassay(TNF-α neutralization), TNF-α binding strength
- ⇒ a pair-wise analytical comparison of CT-P13 to US Remicade is consistent with the conclusion that CT-P13 is highly similar to the reference product (US Remicade)
- b) Adequate analytical bridge between EU Remicade, US Remicade, and CT-P13
- to justify the relevance of the comparative data generated using EU Remicade to support a demonstration of the biosimilarity of CT-P13 to US-Remicade

 (Determining analytical similarity of CT-P13 to US-licensed Remicade) Analytical Similarity Data package : 2 sets, each side-by-side testing a) 2-way analytic similarity assessment (CT-P13 and EU Remicade) b) 3-way analytic similarity assessment of physicochemical similarity Data from side-by-side testing of the 3 products using the same method but conducted at different times were combined for statistical analysis <u>Numbers of analyzed lots</u> (All lots were within the expiry date at the time of testing) a) 3~26 lots of CT-P13, 3~30 lots of EU Remicade, 3~36 lots of US Remicade were assessed in 3-way biosimilarity studies b) considered to reflect a range of expiration dates and product ages CT-P13 lots : manufactured between Feb 2012 and May 2015 (included testing after 9~21 months storage) US Remicade : Expiration dates were between Feb 2015 and Feb 2018 (included testing after 2~29 months storage) 	2.2. Assessment Program
 a) 2-way analytic similarity assessment (CT-P13 and EU Remicade) b) 3-way analytic similarity assessment of physicochemical similarity Data from side-by-side testing of the 3 products using the same method but conducted at different times were combined for statistical analysis <u>Numbers of analyzed lots</u> (All lots were within the expiry date at the time of testing) a) 3~26 lots of CT-P13, 3~30 lots of EU Remicade, 3~36 lots of US Remicade were assessed in 3-way biosimilarity studies b) considered to reflect a range of expiration dates and product ages CT-P13 lots : manufactured between Feb 2012 and May 2015 (included testing after 9~21 months storage) US Remicade : Expiration dates were between Feb 2015 and Feb 2018 	(Determining analytical similarity of CT-P13 to US-licensed Remicade)
 a) 3~26 lots of CT-P13, 3~30 lots of EU Remicade, 3~36 lots of US Remicade were assessed in 3-way biosimilarity studies b) considered to reflect a range of expiration dates and product ages CT-P13 lots : manufactured between Feb 2012 and May 2015 (included testing after 9~21 months storage) US Remicade : Expiration dates were between Feb 2015 and Feb 2018 	 a) 2-way analytic similarity assessment (CT-P13 and EU Remicade) b) 3-way analytic similarity assessment of physicochemical similarity - Data from side-by-side testing of the 3 products using the same method
- EU Remicade : Expiration dates were between Mar 2013 and Feb 2018 (included testing after 4~36 months storage)	 a) 3~26 lots of CT-P13, 3~30 lots of EU Remicade, 3~36 lots of US Remicade were assessed in 3-way biosimilarity studies b) considered to reflect a range of expiration dates and product ages CT-P13 lots : manufactured between Feb 2012 and May 2015 (included testing after 9~21 months storage) US Remicade : Expiration dates were between Feb 2015 and Feb 2018 (included testing after 2~29 months storage) EU Remicade : Expiration dates were between Mar 2013 and Feb 2018

2.3. Analytical Techniques

Table 2. Quality Attributes and Methods Used to Evaluate Analytical Similarity of CT-P13, US-licensed Remicade, and EU-approved Remicade

Quality Attribute	Methods
Primary structure	 Peptide mapping with ultraviolet (UV) and mass spectrometry (MS) detection Amino Acid Analysis Post-translational modification (MS/MS) Intact Mass Reduced (LC-MS) Peptide mapping coupled with tandem mass
	spectrometry (MS/MS)
Protein content	• UV280
Higher order structure	 Far and Near UV circular dichroism FTIR Free thiols Antibody Array Liquid chromatography coupled with mass spectrometry (LC-MS)(disulfide bond characterization)
	 Differential scanning calorimetry

igh molecular weight becies/aggregates	 Size exclusion chromatography (HPLC) Size exclusion chromatography (SEC-MALS) CE-SDS (reduced and non-reduced) Analytical Ultracentrifugation
Charge	IEF IEC-HPLC
Glycosylation	 Oligosaccharide profiling N-linked Glycan analysis Sialic Acid analysis Monosaccharide Analysis

Potency	In vitro TNF-α neutralization assay
Binding assay – TNF	ELISA
	Cell based binding affinity
Binding assay – Fc	NK cell binding affinity via Fc receptors (in
	presence of 50% serum or 1% BSA)
	 FcγRIIIa V and F type binding affinity (SPR)
	 FcγRIIIb binding affinity (SPR)
	 FcγRIIa binding affinity (SPR)
	 FcγRIIb binding affinity (SPR)
	 FcγRI binding affinity (ELISA)
	 FcRn binding affinity (SPR)
	C1q binding assay (ELISA)
	C1q binding assay (ELISA)
Bioassay/ mechanism of	 ADCC (PBMC as effectors)
action exploration	 ADCC (NK cells as effectors)
	 ADCC (LPS-stimulated monocytes as targets)
	• CDC
	 Induction of apoptosis by reverse signaling
	Inhibition of pro-inflammatory cytokine release by
	reverse signaling (Caco-2 cells)
	Wound healing (closure %)
	 Inhibition of T Cell proliferation (MLR)
	 Induction of regulatory macrophages
	120

<Consideration 1> Mechanisms of Action of Infliximab \checkmark Infliximab is an IgG1 kappa monoclonal antibody, with a high avidity for TNF- α , both soluble and membrane-bound forms ✓ Mechanisms of Action (MoA) - (primarily) sTNF- α binding via the variable region complementary determining region (CDR) \Rightarrow neutralizing and sequestering excess sTNF- α produced in local inflammatory sites - (another potential) binding and cross-linking mTNF on inflammatory cells or induction of regulatory macrophages ⇒ apoptosis by reverse signaling - (some potential) effector function of Fragment crystallizable region (Fc) part of the antibody ⇒ ADCC or CDC of lysis of mTNF+ inflammatory T-cells or other cells associated with particular disease states ✓ The relative importance of merely sequestering sTNF vs eliciting other effecter functions on mTNF+ cells may vary between disease states - high affinity binding and neutralization of sTNFα is important across all Remicade indications - Binding to $tmTNF\alpha$ may especially contribute to MoA in treating CD and UC ✓ Thus, all potential activities of infliximab were investigated as part of biosimilarity studies ✓ (Another Clinical Relevance) Binding to FcRn influences PK 121

Table 3. Known and Potenti JS-licensed Remicade in th	ial (Like ne Licei	ely or P nsed C	lausib onditio	le) Mec ons of l	hanisms of Jse	Action
MOA of Remicade	RA	AS	PsA	PsO	CD, Pediatric CD	UC, Pediatr UC
Mechanisms involving the Fab (antigen b	oinding) reg	gion:	,			
Blocking TNFR1 and TNFR2 activity via binding and neutralization of s/tmTNF	Known	Known	Known	Known	Likely	Likely
Reverse (outside-to-inside) signaling via binding to tmTNF:	-	-	-	-	Likely	Likely
Apoptosis of lamina propria activated T cells	-	-	-	-	Likely	Likely
Suppression of cytokine secretion	-	-	ш. Т	Ξ.	Likely	Likely
Mechanisms involving the Fc (constant)	region:	35				
Induction of CDC on tmTNF- expressing target cells (via C1q binding)	-	-	-	-	Plausible	Plausibl
Induction of ADCC on tmTNF- expressing target cells (via FcyRIIIa binding expressed on effector cells)	-	-	-	-	Plausible	Plausib
Induction of regulatory macrophages in mucosal healing	-	-	~	-	Plausible	Plausib

* In accordance with FDA recommendations,

- (1) Physicochemical biosimilarity Studies
- □ Criticality of Quality Attributes
- a) Factor 1 : Evaluation of the clinical relevance and possible impact on activity,
 PK/PD, safety, immunogenicity, and efficacy in the identification of Quality Target
 Product Profile (QTPP) and Critical Quality Attributes (CQA) based on literature data
- b) Factor 2 : the level of attribute present
- c) Factor 3 : assay sensitivity

Factor	Physicochemical Test Scoring System
	10 : Clinical impact was considered to be high if the attribute is known to impact biological activity, safety, or immunogenicity
Factor 1 Clinical impact	5 : Clinical impact was considered to be medium if the attribute has the potential to impact biological activity, safety, or immunogenicity
	1: Clinical impact was considered to be low if the attribute does not impact biologica activity, safety, or immunogenicity
Factor 2	5: > 30% high content
Level of attribute in	3: 10 - 30% medium content
infliximab	1 : < 10% low content
Factor 3	5: Validated/qualified in house with %CV $\leq 10\%$
Sensitivity of assay to	3: Validated/qualified in house with %CV > 10%
detect difference	1: CRO method or in-house method not fully qualified

- Example of statistical analysis : A tiered approach based on a criticality risk ranking (ref: S. Chow, On assessment of analytical similarity in biosimilar studies, Drug Designing 3 (3) 2014)
- a) Tier 1: Equivalence test with the null hypothesis
 - The Equivalence Margin for the CI of mean difference was defined as \pm 1.5SD based on reference product variability (δ = 1.5\sigma R)
 - Defining the EM as ±1.5σ assures 85% power of accepting the equivalence hypothesis, if the true mean difference is 1/8 times the σR with 10 biosimilar product lots and 10 comparator product lots used for testing and assuming a Type I error rate of 5% (CI of 90%) for the equivalence testing procedure
 - Results are shown as 'within EM(Equivalence Margin)' or 'not within EM'
- Applied : extinction coefficient, protein concentration, Micro-flow Imaging, and HIAC

 $\hfill\square$ Statistical analysis : A tiered approach based on a criticality risk ranking

- b) Tier 2: Quality range (QR) approach ('mean $\pm x\sigma$ ' of reference product)
- σR : variation or reference product,

x : multiplicity of the unit reference product variation

- QR limits : mean±3SD (Based on FDA criteria, high similarity was considered to have been demonstrated if 90% of data points were within the QR of US Remicade lots (*Tsong et al*, 2015))
- Results are shown as the % of lots within the QR of US Remicade
- Most of Physicochemical tests were generally assigned to Tier 2
- c) Tier 3: Presentation of raw/graphical data (Visual comparison)
- Inappropriate statistical analysis : no variability in the RP, qualitative testing etc.
- Results are shown as 'high' or 'not high'

126

2.4. Similarity Acceptance Criteria and Statistical analysis

(2) Biological and Functional Assays

□ Criticality of Quality Attributes

- a) based on: relationship to <u>MoA</u> or PK (Factor 1) and assay sensitivity (Factor 2)
- greater weight than physicochemical tests in criticality ranking by increasing the scoring for Factor 1 since the biological activity assays directly measure biological activities related to mechanisms of action, PK, and efficacy
- Biological assays with criticality scores of 100 and above : Tier 1
- b) High score : *in vitro* TNFα Neutralization, TNFα Binding Affinity, Cytokine Suppression in Caco-2 cells, FcRn binding etc and FcRn binding affinity
- related to neutralizing the activity of sTNF α \Rightarrow relevant to all indications
- FcRn ⇔ PK

- c) Moderate score : Cell Based Binding Affinity, Inhibition of Cytokine Release by Reverse Signaling etc.
- related to binding to tmTNFα and inhibition of cytokine release through reverse signaling into the tmTNFα binding cells ⇒ particularly relevant to CD & UC
- d) Tier 3 (qualitative tests) : ADCC using LPS stimulated monocytes as target cells because no measureable activity was obtained, Wound healing by induced regulatory macrophages because this was a qualitative assay

2.4. Similarity Acceptance Criteria and Statistical analysis

Table 5 Factors Included in Critically Ranking for Biological Assay Data

Factor	Biological Assay Scoring System
Factor 1 Relationship to MoA or PK	 100: The assay measures a biological activity key to MoA or PK in all indications 50: The assay measures a biological activity which may contribute to MoA or PI in some indications 10: The assay measures a biological activity which is not important to MoA or PI in any indication
Factor 2 Sensitivity of Assay to Detect Difference	 5: In-house fully validated/qualified method with %CV < 15% 3: In-house fully validated/qualified method with %CV ≥ 15% 1: Not fully qualified due to inherent variability

□ Statistical analysis : A tiered approach based on a criticality risk ranking

- a) Tier 1: Equivalence test with the null hypothesis
- Biological assays with criticality scores of 100 and above
- EM of δ = 1.5 σR of US Remicade data
- Required sample size : 10 lots (based on the variability of 7 reference product lots in the test method with greatest variability, CDC and Suppression of Cytokine Release by Reverse Signaling)
- Combining data at multiple concentrations for statistical analysis to provides increased power (justified based on all concentrations being within the linear portion of the dose- response curve and the use of relative values (compared to internal reference standard) in these assays)
- Results are shown as 'within EM' or 'not within EM' for CI of mean difference based on EM

130

2.4. Similarity Acceptance Criteria and Statistical analysis

- b) Tier 2: Quality range (QR) approach ('mean $\pm x\sigma$ ' of reference product)
 - Assays with criticality scores below 100
 - Generally mean±3SD
 - Where assay variability (%RSD) was greater than 20%, the QR was decreased to mean±2SD (corresponding to 95% coverage of reference product values) to ensure that any differences between the products were not masked by assay variability
- Results are shown as the % of lots within the QR of US Remicade
- Considered to high similarity where \geq 90% of the lots were within the QR of US Remicade
- c) Tier 3: Visual comparison
- ADCC using LPS stimulated monocytes as target cells, wound healing by induced regulatory macrophages (no measurable activity)
- Results are shown as 'high' or 'not high' or the assay result is reported

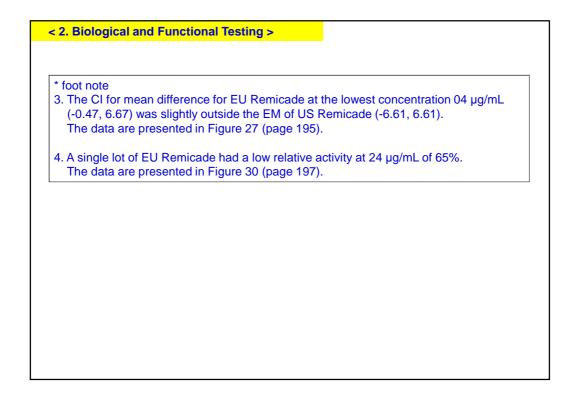
Clinical Relevance	Potential Impact ¹	Test	Biosimilarity CT-P13 vs US (Highly Similar)	Analytic Bridge EU vs US (Highly Similar)		
Efficacy	High	Protein Concentration (UV ₂₈₀)	Yes	Yes		
	High	SEC-HPLC	No ²	Yes		
F#6 8	High-Low	SEC-MALS	No ²	Yes		
	High-Moderate	Analytical Ultracentrifugation (AUC)	Yes	Yes		
	High-Moderate	Micro-flow Imaging (MFI)	Yes	Yes		
	High-Moderate	Light Obscuration (HIAC)	Yes	Yes		
	Moderate	Non-reduced CE-SDS	No ²	Yes		
Efficacy	Moderate	Reduced CE-SDS	Yes	Yes		
	Moderate	IEF	Yes	Yes		
Efficacy	Efficacy	Efficacy	Mid-Low	IEC-HPLC	Yes No: Peak 1, Peak 4 ²	Yes No: Peak 3, Peak 5, Peak 6 ²
Immunogenicity	Mid-Low	Optimized HPAEC-PAD	Yes No: G0 ²	Yes		
	Mid-Low	NP-UPLC Glycan Analysis	Yes No: G0, G1F-GN, G1, G1F, Unknown 1, G1F'+NGNA, G2F+NGNA, G2F+2NGNA ²	-		
	Mid-Low	N-linked Glycan Analysis	Yes No: G0, G1F1NGNA, G2F1NGNA ²	Yes No: G0, G1F1NGNA		
	Mid-Low	Sialic Acid Analysis	Yes	Yes		
	Low	Monosaccharide Analysis	Yes	Yes		
	Low	Glycation	No ²	Yes		
	Efficacy & Immunogenicity Efficacy Efficacy	Relevance Efficacy High Efficacy & High High-Low High-Moderate High-Moderate Moderate Efficacy Moderate Efficacy Mid-Low Efficacy Mid-Low Immunogenicity Mid-Low Immunogenicity Mid-Low	Relevance High Protein Concentration (UV ₂₈₀) Efficacy High SEC-HPLC High-Moderate Analytical Ultracentrifugation (AUC) High-Moderate Malytical Ultracentrifugation (AUC) High-Moderate Malytical Ultracentrifugation (AUC) High-Moderate Micro-flow Imaging (MFI) High-Moderate Non-reduced CE-SDS Moderate Reduced CE-SDS Moderate IEF Efficacy Mid-Low Immunogenicity Mid-Low Mid-Low Optimized HPAEC-PAD Mid-Low NP-UPLC Glycan Analysis Mid-Low Nelinked Glycan Analysis Mid-Low Sialic Acid Analysis Low Monosaccharide Analysis	Relevance Image: Content of the second		

Attribute	Clinical Relevance	Potential Impact ¹	Tier	Test	Measurement	Biosimilarity CT-P13 vs US Remicade (equivalence/ % within QR/visual similarity)	Analytic Bridge EU vs US Remicade (equivalence/ % within QR/ visual similarity)		
		High	3	Peptide Mapping (HPLC)	Visual comparison	High	High		
					% Deamidation HC				
					Asn57	100	100		
					Asn318	100	100		
					Asn364	100	100		
		High-Low	2	Peptide Mapping	Asn387	100	100		
		There to w	2	(LC-MS)	Asn41	100	100		
					% Oxidation HC				
							Met255	100	100
					% C-terminal lysine				
	F6C a a a a b b b b b b b b b b				variant HC Lys450	100	88		
Dulana	Efficacy,			Intact Mass	Mass (Da)				
Primary Structure	Safety, Immuno-	Low	3	(Reduced)	HC K0: 4 masses	High	High		
structure	genicity	LOW	5	(LC-MS)	HC K1: 3 masses	High	High		
	genicity			(LC-IVIS)	LC: 1 mass	High	High		
			3		Robust amino acids	High	High		
		Low	1&2	Amino Acid	Extinction coefficient	Within EM	-		
		LOW	102	Analysis	Extinction coefficient	100	-		
			2		Tyrosine	100	-		
					HC:EVKLEESGGGLVQP	High	High		
		Law	2	N-terminal	GGSMK				
		Low	3	Sequencing	LC:DILLTQSPAILSVSPG	High	High		
					ER				
				Channeling	HC:SLSLSPGK /	High	High		
		Low	3	C-terminal	SLSLSPG				
			5	Sequencing	LC:SFNRGEC	High	High		

Attribute	Clinical Relevance	Potential Impact ¹	Tier	Test	Measurement	Biosimilarity CT-P13 vs US Remicade (equivalence/ % within QR/visual similarity)	Analytic Bridge EU vs US Remicade (equivalence/ % within QR/ visual similarity)								
				Fourier	Amide I	High	High								
				Transform	Amide II	High	High								
		Low	3	Infrared	А	High	High								
			Spectroscopy	В	High	High									
Highan				(FTIR)	С	High	High								
Higher Order	Efficacy &			Differential	Transition 1: 67 - 68°C	High	High								
							Immuno-			Low	3	Scanning	Transition 2: 74 - 75°C	High	High
Structure	genicity			Calorimetry (DSC)	Transition 3: 83 - 84°C	High	High								
		Low	3	Circular Dichroism (CD)	Visual comparison	High	High								
		Moderate	2	Free Thiol Analysis	Average free SH/IgG (mol/mol)	100	100								
		Moderate	3	Disulfide Bond	Visual comparison: 8 peaks matched	High	High								
		High	3	Antibody Array	Visual comparison of ELISA signal of 34 pAbs	High	High								

Attribute	Clinical Relevance	Potential Impact ¹	Tier	Test	Measurement	Biosimilarity CT-P13 vs US Remicade (equivalence/ % within QR/visual similarity)	Analytic Bridge EU vs US Remicade (equivalence/ % within QR/ visual similarity)	
	[High	2	SEC-HPLC	% Monomer	0	100	
	Efficacy &		High-Low	2	SEC-MALS	% Monomer % HMW MW Monomer MW HMW	0 0 71 86	100 100 100 100
		High- Moderate	2	Analytical Ultra- centrifugation (AUC)	% Monomer % Higher Species	100 100	100 100	
· · · · ·	Immuno- genicity	High- Moderate	1	Micro-Flow Imaging (MFI)	Sub-visible particles 1 ≤, < 100 (μm) 2 ≤, < 100 (μm) 5 ≤, < 100 (μm) 10 ≤, < 100 (μm)	Within EM Within EM Within EM Within EM	Within EM Within EM Within EM Within EM	
		High- Moderate	1	Light Obscuration (HIAC)	Sub-visible particles $2 \le (\mu m)$ $5 \le (\mu m)$ $10 \le (\mu m)$	Within EM Within EM Within EM	Within EM Within EM Within EM	

Attribute	Clinical Relevance	Potential Impact ¹	Tier	Test	Measurement	Biosimilarity CT-P13 vs US Remicade (equivalence/ % within QR/visual similarity)	Analytic Bridge EU vs US Remicade (equivalence/ % within QR/ visual similarity)	
		Moderate	2	Non-reduced CE-SDS	% Intact IgG	0	97	
	Effica au			Reduced	% Sum H+L chains	96	94	
	Efficacy	Епісасу	Moderate	2	CE-SDS	% Non-glycosylated HC	96	94
		Moderate	3	IEF	8 bands identified	High	High	
Content	Efficacy	High	1&2	Protein Concentration (UV ₂₈₀)	Reconstituted product	Within EM 100	- 92	


Attr	ribute	Clinical Relevance	Potential Impact ¹	Tier	Test	Measurement	Biosimilarity CT-P13 vs US Remicade (equivalence/ % within QR/visual similarity)	Analytic Bridge EU vs US Remicade (equivalence/ % within QR/ visual similarity)
	harge iriants	Efficacy	Mid-Low	2	IEC-HPLC	% Peak 1 % Peak 2 % Peak 3 % Peak 4 % Peak 5 % Peak 6	40 100 100 0 100 100	90 100 70 90 80 70
	/cosyl- ition	Immuno- genicity	Mid-Low	2	Oligo-saccharide Profiling Using HPAEC-PAD Sialic Acid	% GOF % Man5 % G0 % G1F % G2F % SA1 % SA2 Molar ratio sialic	100 100 9 100 100 100 100	100 100 97 97 100 100
			Mid-Low Low	2	Analysis Monosaccharide Analysis	acid/protein (mol/mol) Molar ratio monosaccharide/ protein (mol/mol) Fuc GlcN Gal	100 100 100 100	100 100 100 100
			Low	2	Glycation (LC-ES-MS)	Man % Glycated LC % Glycated HC	100 0 0	100 100 100

Attribute	Clinical Relevance	Potential Impact ¹	Tier	Test	Measurement	Biosimilarity CT-P13 vs US Remicade (equivalence/ % within QR/visual similarity)	Analytic Bridge EU vs US Remicade (equivalence, % within QR, visual similarity)
	ĺ			Í	G0F-GN	100	100
					G0	0	100
					GOF	100	100
					Man5	100	100
					G1F-GN	0	100
					G1	87	96
					G1F	0	100
					G1F'	100	100
					Unknown 1	4	100
		Mid-Low	2	NP-UPLC Glycan	G2	100	100
Glycosyl-		WIId-LOW	2	Analysis	G2F	100	100
ation					G1-GN+NGNA	100	100
					G1F-GN+NGNA	100	100
					G1F+NGNA	100	100
					G1F'+NGNA	4	100
					G2+NGNA	100	100
					G2F+NGNA	87	100
					Unknown 2	100	100
					Unknown 3	96	100
					G2F+2NGNA	39	100

100
100
100
87
100
100
100
87
100
100
100
100

Attribute	Clinical Relevance	Potential Impact ¹	Tier	Test	Measurement	Biosimilarity CT-P13 vs US Remicade (equivalence/ % within QR/visual similarity)	Analytic Bridge EU vs US Remicade (equivalence/ % within QR/ visual similarity)
		High	2	SEC-HPLC	% Monomer	0	100
					% Monomer	0	100
		High-Low	2	SEC-MALS	% HMW	0	100
		Figh-Low	2	SEC-IVIALS	MW Monomer	71	100
					MW HMW	86	100
	Efficacy &	High- Moderate	2	Analytical Ultra- centrifugation (AUC)	% Monomer % Higher Species	100 100	100 100
	Immuno-				Sub-visible particles		
	genicity	High		Micro-Flow	1 ≤, < 100 (μm)	Within EM	Within EM
Density /		High- Moderate	1		2 ≤, < 100 (µm)	Within EM	Within EM
Purity/		wouerate		Imaging (MFI)	5 ≤, < 100 (µm)	Within EM	Within EM
Impurity					10 ≤, < 100 <mark>(</mark> µm)	Within EM	Within EM
					Sub-visible particles		
		High-	1	Light Obscuration	2 ≤ (µm)	Within EM	Within EM
		Moderate	1	(HIAC)	5 ≤ (µm)	Within EM	Within EM
					10 ≤ (μm)	Within EM	Within EM

Activity	Clinical Relevance	Potential Impact ¹	Assay	Measurement	Biosimilarity US vs CT-P13 ²	Analytic Bridge US vs EU ²
	MoA & Efficacy- all	High	<i>In Vitro</i> TNFα Neutralization	% Relative activity by cell viability	Within EM	Within EM
Binding	High	TNFα Binding Affinity (ELISA)	% Relative binding (EC ₅₀)	Within EM	Within EM	
to sTNFα MoA & Efficacy- CD & UC	High	Caco-2 (Cytokine Suppression)	% Relative activity Combined conc. At 10 μg/mL At 2 μg/mL At 0.4 μg/mL	Within EM Within EM Within EM Within EM	Within EM Within EM Within EM Not within EM ³	
		Moderate	Cell Based Binding Affinity	% Relative binding (EC ₅₀)	Within EM	Within EM
Binding to tmTNFα	MoA & Efficacy- CD & UC Mc	Moderate	Inhibition of Cytokine Release by Reverse Signaling	% Relative activity Combined conc. At 5.3 μg/mL At 2.4 μg/mL At 1.1 μg/mL	Within EM Within EM Within EM Within EM	Within EM Within EM Not within EM ⁴ Within EM
FcRn Binding	PK- all indications	High	FcRn Binding Affinity (SPR)	% Relative binding affinity by KD	Within EM	Within EM

Activity	Clinical Relevance	Potential Impact ¹	Tier	Assay	Measurement	Biosimilarity US vs CT-P13 ² (% within QR/visual comparison)	Analytic Bridge US vs EU ² (% within QR/visual comparison
Binding to tmTNFα	MoA & Efficacy- CD & UC	Low	2	Induction of Apoptosis by Reverse Signaling (FACS)	% Relative apoptotic cells Combined conc. At 1.0 μg/mL At 0.6 μg/mL At 0.3 μg/mL At 0.2 μg/mL	100 90 100 100 100	100 100 100 100 100
Binding	Mod 8	Low	2	Induction of Regulatory Macrophages ^{4,5}	% Induced Regulatory Macrophage from Total PBMC At 2.5 µg/mL At 0.625 µg/mL At 0.156 µg/mL	100 100 100	67 ³ 100 ³ 100 ³
to tmTNFα- Fc	MoA &	Low	2	Suppression of T cell Proliferation by Regulatory Macrophages ⁴	% Relative Proliferation Combined conc. At 125 ng/mL At 63 ng/mL At 31 ng/mL	87 100 80 60	100 ³ 100 ³ 100 ³ 67 ³
		Low	3	Would Healing by Regulatory Macrophages	Estimate of % Closure	Highly similar	Highly simila

	Immune	Low	2	C1q Binding	% Relative binding	100	100	1	
C1q	system		-	Affinity (ELISA)	affinity	100	100		
Binding & CDC Activity	mediator - classical complement pathway	Low	2	CDC	% Relative binding by EC ₅₀	92	91		
		Low	2	FcγRIIIa V Type Binding Affinity (SPR)	% Relative binding affinity KD	85	100		
	Immuno	Low	2	FcγRIIIa F Type Binding Affinity (SPR)	% Relative binding affinity KD	61	100		
Fc Binding	Immune system mediator	Low	2	FcγRIIIb Binding Affinity (SPR)	% Relative binding affinity KD	90	100		
	mediator	Low	2	FcγRIIa Binding Affinity (SPR)	% Relative binding affinity KD	100	100		
				Low	2	FcγRIIb Binding Affinity (SPR)	% Relative binding affinity KD	100	100
		Low	2	FcγRI Binding Affinity (ELISA)	% Relative binding affinity EC ₅₀	100	100		
					% Relative binding			1	
				Ex Vivo Binding	Combined conc.	33	100		
		Low	2	to NK Cells in 1%	At 50 μg/mL	0	100		
				BSA ³	At 10 μg/mL	0	67		
	Immune				At 2 μg/mL	33	100		
	system				% Relative binding				
				Ex Vivo Binding	Combined conc.	89	89		
		Low	2	to NK Cells in	At 50 μg/mL	100	100		
				50% Serum ³	At 10 μg/mL	100	33		
					At 2 μg/mL	67	100		

		Low	2	ADCC using PBMC (Healthy Donor)	% Relative activity	100	100
tmTNFα & Fi	MoA &	Low	2	ADCC using NK Cells (Healthy Donor)	% Relative activity Combined conc. At 8 ng/mL At 4 ng/mL At 2 ng/mL	96 100 96 96	99 100 97 97
& Fc Binding	Fc Efficacy- CD	Low	3	ADCC using LPS- stimulated Monocytes and NK Cells (Healthy Donor)	At 8 concentrations (0.000013 μg/mL to 1 μg/mL)	Highly similar (no activity)	Highly similar (no activity)
		Low	3	ADCC using IBD patient-derived LPMC and NK Cells	At 10 μg/mL and 50 μg/mL	Highly similar (low-no activity)	-
3. Only 4. The (- Only	QR (unless 3 lots of CT QR : mean 3 lots of E	Γ-Ρ13, U ±2SD fo U Remio	S and E r these r cade wei	esearch assay re included in t	rere included due rs due to inherent	t assay varia	ability

Assay	Tier	Target	Cells	Biosimilarity CT-P13 vs US (within EM/ % within QR/visual comparison)	Analytic Bridge EU vs US (within EM/ % within QR/ visual comparison)
Caco-2 (Cytokine Suppression) ¹	1	sTNFα	Caco-2 (Human epithelial colorectal adenocarcinoma cells)	Within EM	Within EM ²
Cell Based Binding Affinity	1	tmTNFα	tmTNFα Jurkat Cells	Within EM	Within EM
Inhibition of Cytokine Release by Reverse Signaling ¹	1	tmTNFα	LPS-stimulated PBMC	Within EM	Within EM ³
Induction of Apoptosis by Reverse Signaling ¹	2	tmTNFα	tmTNFα Jurkat Cells	100 ⁴	100
Induction of Regulatory Macrophages	2	tmTNFα- macrophage	Mixed lymphocytes	100	100 ^{5,6}
Suppression of T- cell Proliferation by Regulatory Macrophages ¹	2	tmTNFα- macrophage	Mixed lymphocytes	87 ⁷	100 ^{5,8}

ADCC 3 mo	cell hTNFa of Jurkat cell-FcyRIIIa of PBMC tmTNFa of nocytes-FcyRIIIa of NK cell hTNFa of LPMC-	overexpressing Jurkat cell & NK cells tmTNFα- overexpressing Jurkat cell & PBMC LPS-stimulated monocytes & NK cells	100 Highly similar	99 100 Highly similar (no activity)
ADCC 2 0 3 mo 3 tr Foot note . Conclusions of statistica	cell-FcyRIIIa of PBMC tmTNFa of nocytes-FcyRIIIa of NK cell ITNFa of LPMC-	overexpressing Jurkat cell & PBMC LPS-stimulated monocytes & NK cells	Highly similar	Highly similar
foot note . Conclusions of statistica	nocytes-FcγRIIIa of NK cell TNFα of LPMC-	monocytes & NK cells		
foot note . Conclusions of statistica		IDD metions deviced		
. Conclusions of statistica	γRIIIa of NK cell	·	Highly similar (low-no activity)	Highly similar (low-no activity
EU Remicade outside o . 90% of CT-P13 lots with . Reduced number of EU . 67% EU Remicade with . 100% CT-P13 within QR 60% CT-P13 within QR	f EM at 0.4 µ f EM at .24 µ nin QR at 1 µ Remicade lo in QR at 25 µ R at 125 ng/m	g/mL g/mL due to a singl g/mL ts tested Ig/mL concentratior IL; 80% CT-P13 wit	e lot with low relati	ve activity

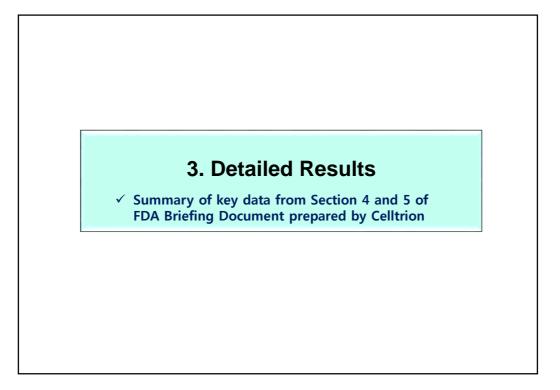
2.6. Assessment of Uncertainties

□ Uncertainties were thoroughly investigated using a step-wise approach involving:

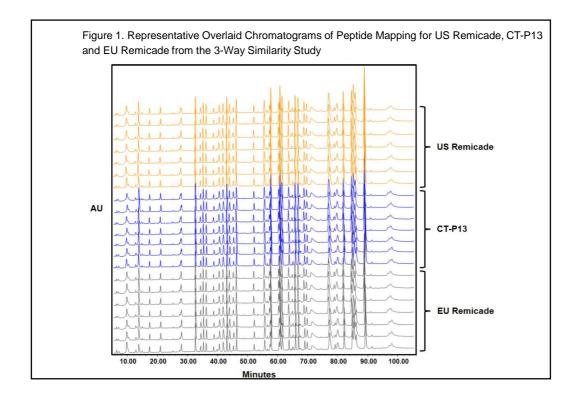
a) In vitro studies to characterize differences

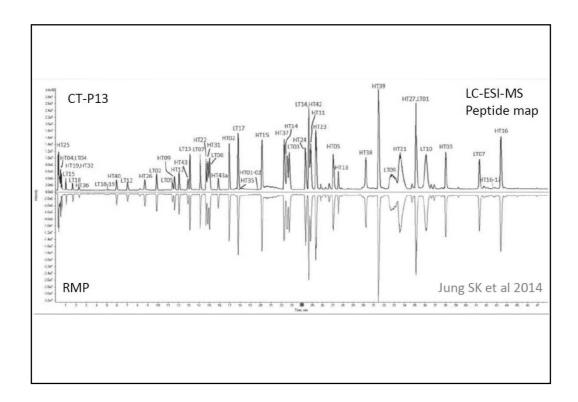
- b) Biological assays to investigate impact
- c) Data from forced degradation studies used to identify thresholds
- d) Ex vivo studies performed to determine the impact on human cells

e) Clinical studies to address any remaining uncertainty

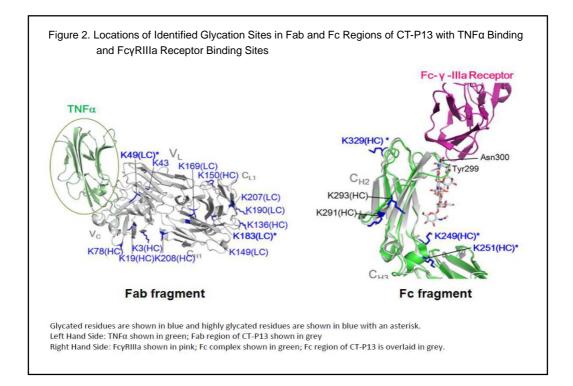

Table 10 Conclusions of Statistical Analysis of the 3-way Physicochemical Similarity Study

Attribute	Clinical Relevance	Potential Impact ¹	Test	Biosimilarity CT-P13 vs US (Highly Similar)	Analytic Bridge EU vs US (Highly Similar)
	[High	Peptide Mapping (HPLC)	Yes	Yes
		High-Low	Peptide Mapping (LC-MS)	Yes	Yes No: HC Lys450 ⁴
Primary	Efficacy, Safety,	Low	Intact Mass (Reduced) (LC-MS)	Yes	Yes
Structure	Immunogenicity	Low	Amino Acid Analysis	Yes	Yes
		LOW	Extinction Coefficient (L·g ⁻¹ ·cm ⁻¹)	Yes	-
		Low	N-terminal Sequencing	Yes	Yes
		Low	C-terminal Sequencing	Yes	Yes
		Low	Fourier Transform Infrared Spectroscopy (FTIR)	Yes	Yes
		Low	Differential Scanning Calorimetry (DSC)	Yes	Yes
Higher Order	Efficacy &	Low	Circular Dichroism (CD)	Yes	Yes
Structure	Immunogenicity	Moderate	Free Thiol Analysis	Yes	Yes
		Moderate	Disulfide Bond	Yes	Yes
		High	Antibody Array	Yes	Yes

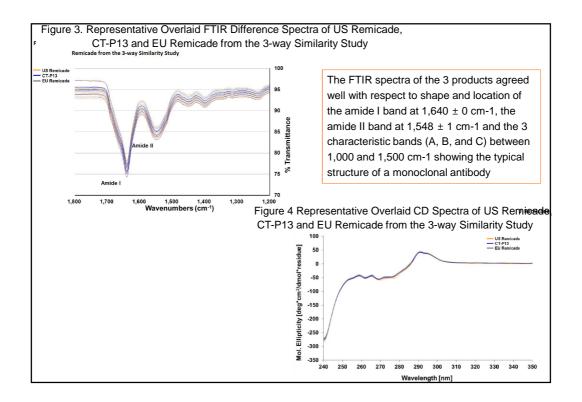

Table 11. Residual Uncertainties Identified in Physicochemical and Structural Analyses, Potential Impact, and Studies to Address Uncertainty

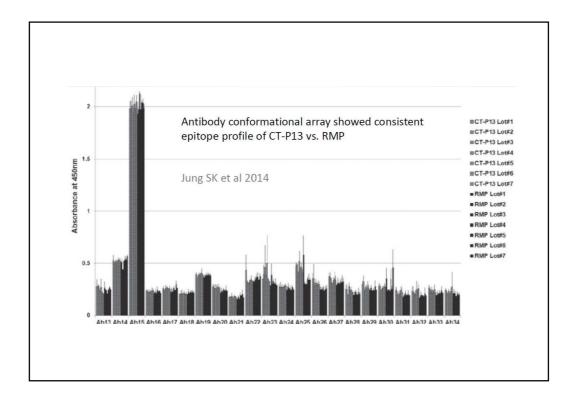

Physicochemical		Level (Mean Value)		Potential	Studies to Address	Conclusions of Studies to
Uncertainty	CT-P13	US Remicade	EU Remicade	Impact	Uncertainty	Address Uncertainty
Intact IgG (H2L2) (CE-SDS NR)	95.1%	98.2%	98.3%	Biologic Activity	Functional assays to compare biological activity	Theoretically translates to 1.59 difference in TNFα binding; No impact on biological activities
Charge Variants C-terminal lysine) (IEC-HPLC,%)	$\begin{array}{c} \mbox{Peak 1: } 6.6 \pm 0.9 \\ \mbox{Peak 2: } 12.1 \pm 0.4 \\ \mbox{Peak 3: } 39.8 \pm 0.8 \\ \mbox{Peak 4: } 24.9 \pm 0.6 \\ \mbox{Peak 5: } 3.5 \pm 0.3 \\ \mbox{Peak 6: } 13.1 \pm 0.8 \end{array}$	$\begin{array}{l} {\rm Peak \ 1:\ 3.8 \pm 0.8} \\ {\rm Peak \ 2:\ 9.6 \pm 1.4} \\ {\rm Peak \ 3:\ 40.7 \pm 2.8} \\ {\rm Peak \ 4:\ 19.7 \pm 0.8} \\ {\rm Peak \ 5:\ 4.9 \pm 0.7} \\ {\rm Peak \ 5:\ 4.9 \pm 0.7} \\ {\rm Peak \ 6:\ 21.6 \pm 3.4} \end{array}$	Peak 1: 2.8 ± 0.8 Peak 2: 7.9 ± 1.5 Peak 3: 37.0 ± 6.5 Peak 4: 20.6 ± 0.8 Peak 5: 5.6 ± 1.8 Peak 6: 26.1 ± 6.5	Biologic Activity	In vitro and in vivo tests Functional assays to compare biological activity	CT-P13 has higher levels witho C-terminal lysine (Peak 1 and Peak 2) and with a single C-terminal lysine (Peak 4), and lower levels of infliximab with C-terminal lysine residues (Pea 5 & Peak 6). C-terminal lysines are removed from the molecule rapidly in serum and <i>in vivo</i> . Addressed i clinical studies
High Molecular Weight Forms (SEC-HPLC) (SEC-MALS)	0.8% 0.5%	0.2% 0.2%	0.2% 0.2%	Immunogenicity	Assessment of immunogenicity in clinical studies	Addressed in clinical studies

Physicochemical		Level (Mean Value)		Potential	Studies to	Conclusions of Studies to
Uncertainty	CT-P13	US Remicade	EU Remicade	Impact	Address Uncertainty	Address Uncertainty
Glycation (LC-ES-MS, %)	LC: 2.4 ± 0.1 HC: 4.0 ± 0.2	LC: 0.8 ± 0.1 HC: 0.8 ± 0.1	LC: 0.7 ± 0.0 HC: 0.8 ± 0.1	Biologic Activity	Functional assays to compare biological activity	CT-P13 has higher levels of glycation (non-enzymatic addition of glucose to lysine residues) in LC and HC. The site of glycation are the same. Non of the sites of glycation are within the TNF α binding regior No impact on biological activities was detected. No impact on immunogenicity.
G0 Content (HPAEC-PAD) (N-linked glycan) (NP-UPLC)	0.72% 1.1% 0.7%	1.74% 2.2% 1.4%	1.67% 2.4% 1.3%	Biologic Activity	Functional assays to compare biological activity	Impact on FcyRIIIa binding affinity, translating into lower binding to NK cells <i>ex vivo</i> in th absence of serum. No impact oc NK cell binding in the presence of serum. High similarity in all ADCC assays. Slightly lower (69 cytotoxicity at 8 ng/ml) mean ADCC activity using NK cells of V/F FcyRIIIa allotype unlikely to be clinically significant as this was not observed in the other ADCC assays and little or no ADCC activity was detected using IBD patient cells.

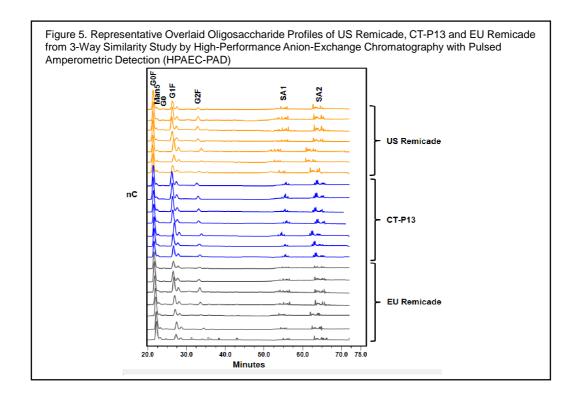


5.1. F	rimary	Structu	ire and M	olecu	liar w	reight	
Unless	otherwise inc	dicated, the c	lata described i	n this sec	tion are f	rom the 3-way simila	rity analy
Proper- ties	Attribute	Test Method	Similarity Acceptance Criteria(Tier)/Meas urement	(CT-P13 vs US RBP)	(EU vs US RBP)	Results and Conclusion	Method Suitability
	Peptide Mapping	Peptide mapping (HPLC)	Tier 3 Visual comparison	High	High	Highly similar profile and retention times to RBP (Acceptable) No missing or additional significant peptides	
Primary structure	Amino acid sequence	Peptide mapping (LC-ES-MS/MS)		Identical		Matched the expected peptides Sequence coverage 100% (Acceptable)	
	N/C-terminal sequence	LC-ES-MS/MS	Tier 3 (identical to the RPB)	High	High	identical in 3 products and match the expected sequence (C-term : with and without a terminal lysine residue in all 3 products)	
	Molecular mass	LC-ES-MS (intact, reduction)	Tier 3 HC KO: 4 masses HC K1: 3 masses LC: 1 mass	All High	All High	closely match with the expected mass, and Highly similar to RBP	
	Amino acid Composition	Amino acid Analysis	Tier 3 (Robust amino acids)	High	High	Similar in 3 products	

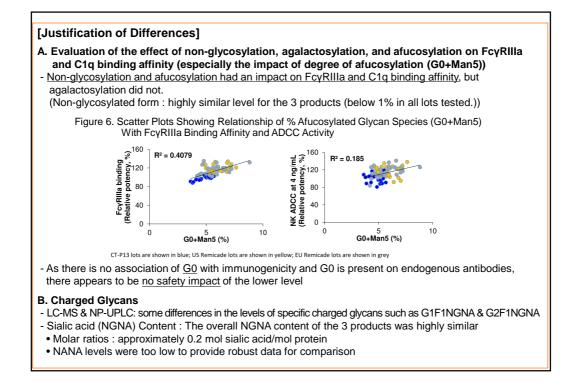


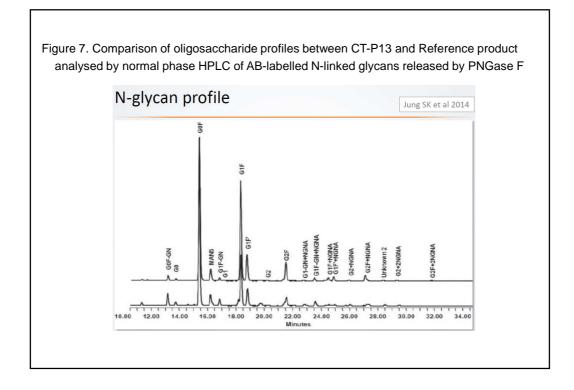


Properties	Attribute	Test Method	Similarity Acceptance Criteria(Tier)/Measurem ent	(CT-P13 vs U5 RBP)	(EU vs US RBP)	Results and Conclusion Met	
	% Oxidation HC	LC-MS	Tier 2 : ± 3SD Met255(HC)	100	100	Similar levels in the 3 products	
Post- Translational Modification	Deamidation	LC-MS	Tier 2 : Asn57, Asn318,Asn364, Asn387, Asn41(HC)	All sites, 100	All sites, 100	Highly similar levels in the 3 products	
	% C-terminal Lys variant HC	LC-MS	Tier 2 : Lys450(HC)	100	88	Slightly higher levels of K0 and K1 than US/EU RBP	
-	Glycation	LC-ES- MS	Tier 2 : % Glycated LC % Glycated HC	0 0	100 100	Identical the glycation site profile Higher levels than US/EU RBP	
A. C-term Ly B. Glycation		o clinically vas the sar	ne for the 3 products, co s of glycated forms, the le	vel of glycati		3 remained low : 24% (LC) & 40	% (H

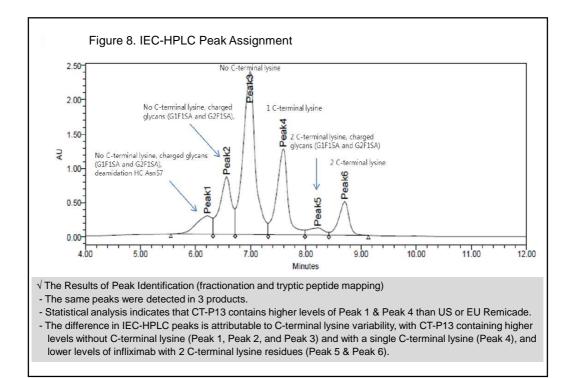


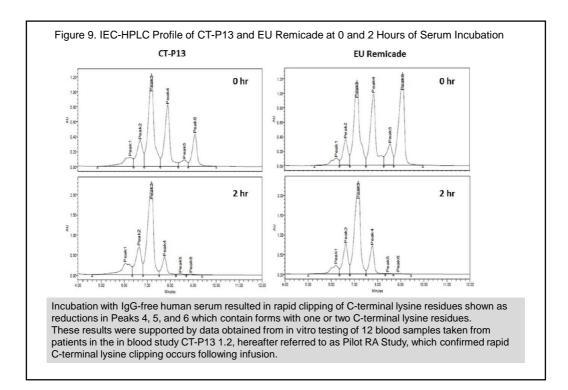
roperties	Attribute	Test Method	Similarity Acceptance Criteria(Tier)/Measure ment	(CT-P13 vs US RBP)	(EU vs US RBP)	Results and Conclusion	Method Suitability
	Secondary Structure	Fourier Transform Infrared Spectroscopy (FTIR)	Tier 3 : Amide I/Amide II/A/B/C	All High	All High	highly similar spectra	
Higher Order Structure	Secondary/ Tertiary Structure	Near/Far Circular Dichroism (CD)	Tier 3 : Visual comparison	High	High	highly similar spectra	
	Conformation Stability	Differential Scanning Calorimetry (DSC)	Tier 3 : Transition temperatures 67-68/74-75/83-84 ℃	All High	All High	highly similar thermal unfolding profiles and thermal transition midpoint temperatures	
	Free thiol	Free thiol Analysis	Tier 2 : ± 3SD Average free SH/IgG(mol/mol)	100 (0.14~0.15)	100 (0.14~0.15)	highly similar levels in 3 products	
-	Disulfide bond	Peptide mapping /LC-MS	Tier 3 : Visual comparison (8 peaks matched)	High	High	Identical in 3 products	
	Epitope Exposure Analysis	Antibody Array	Tier 3 : Visual comparison (ELISA signal of 34 pAbs)	High	High	Identical in 3 products	

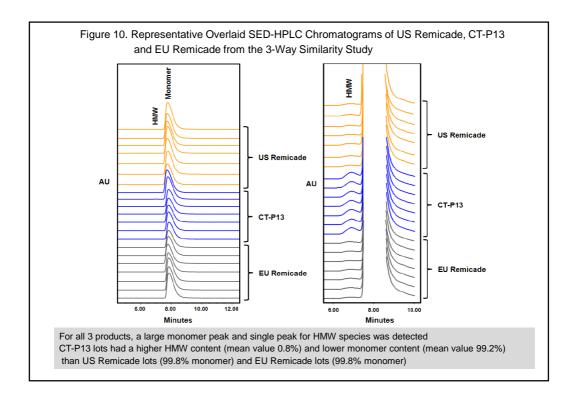




Proper- ties	Attribute	Test Method	Similarity Acceptance criteria	(CT-P13 vs US RBP)	(EU vs US RBP)	Results and Conclusion	Method Suitabilit
ilycosyl- ation	Site Identification And N-glycan structure Analysis	LC-MS	Tier 2 : % Man5 % GOF-GlcNAc % GO % GOF % GIF % G2F % G1FINGNA % G2F1NGNA	100 100 0 100 100 100 0 0	100 100 87 100 100 100 87 100	In all 3 products, • only N-glycosylation site of Asn 300 • No O-linked glycans • Major : GOF, GIF • Minor : Man5, G2F, GO GOF-GIcNAc • Lower levels of GO - 1.1 ± 0.1% of CT-P13, - 2.2 ± 0.2% of US RBP, - 2.4 ± 0.4% of EU RBP • Lower levels of Man5 (showed high variability of US Remicade lots) - 4.5 ± 0.3% of CT-P13, - 5.1 ± 0.9% of US RBP - 5.0 ± 1.3% of EU RBP	
	N-glycan profiling	HPAEC- PAD	Tier 2 : % G0F % Man5 % G0 % G1F % G2F % SA1 % SA2	100 100 9 100 100 100 100	100 100 97 97 100 100	 Lower amounts of afucosylated glycans (G0 and Man5) G0 : 0.72 ± 0.14% of CT-P13, 1.74 ± 0.27% of US RPB, 1.67 ± 0.27% of EU RBP Man : 4.10 ± 0.55% of CT-P13, 4.31 ± 0.86% of US RBP, 4.18 ± 0.94% of EU RBP 	




Proper- ties	Attribute	Test Method	Similarity Acceptance criteria	(CT-P13 vs US RBP)	(EU vs US RBP)	Results and Conclusion	Metho Suitabili
Glycosyl- ation	N-glycan Structure Analysis	NP-UPLC	Tier 2 : GOF-GN GO GOF Man5 GIF-GN GI GIF GI-GN-NGNA GIF-GN+NGNA GIF-SN+NGNA GIF+NGNA GIF+NGNA G2+NGNA G2+NGNA G2F+NGNA G2F+NGNA G2F+2NGNA	100 0 100 0 87 0 100 4 100 100 100 100 100 4 100 87 100 87 100 96 39	100 100 100 96 100 100 100 100 100 100 100 100 100 10	 Slightly lower levels of afucosylated glycans (primarily in GO) -afucosylated glycans : GO, GI, G2, Man5 -G2 content : All lots of CT-P13 were within the QR of US Remicade -G1 : Only 3 lots of CT-P13 had lower levels than the mean ± 35D range of US Remicade -However, the levels of G1 and G2 are very low; in US Remicade G1 is only 02% of total glycan species and G2 is only 05% of total glycan species -Some differences between CT-P13 and US Remicade in the levels of specific charged glycans such as G1F1NGNA and G2F1NGNA 	
	Sialic acid Analysis	HPLC (DMB), LC-MS	Tier 2 : Molar ratio	100	100	-Highly similar for all 3 products (approximately 02 mol sialic acid/mol protein) -NANA levels were too low	
	Monosaccharide Anlaysis	HPLC (DMB), LC-MS	Tier 2 : Molar ratio (Fuc/GlcN/Gal/Man)	All 100	All 100	Highly similar for all 3 products	



ties	Attribute	Test Method	Similarity Acceptance criteria	(CT-P13 vs US RBP)	(EU vs US RBP)	Results and Conclusion	Method Suitability
	Charge isoforms	Iso-Electric Focusing (IEF)	Tier 3 : 8 bands identified	High	High	•Similar band profiles and highly similar pI ranges in 3 products	
			Tier 2 :			 Same charge variant peaks in 3 products 	
Charge hetero- geneity	Charge isoforms	IEC-HPLC	% Peak 1 % Peak 2 % Peak 3 % Peak 4 % Peak 5 % Peak 6	40 100 100 0 100 100	90 100 70 90 80 70	 Higher levels of Peak 1 and Peak 4 than US or EU RBP Mainly due to C-terminal Lys variation Peak 1/2/3 : K0 variants Peak 4 : K1 variant Peak 5/6 : K2 variants 	Acceptable (No clinically meaningful)
IEC denti No cli	fication of I	aningful : C-te	aks : confirmed b erminal lysine vari	ability had n	o impact c		esidues

operti es	Attribute	Test Method	Similarity Acceptance criteria	(CT-P13 vs US RBP)	(EU vs US RBP)	Results and Conclusion	Metho Suitabi
						Higher HMW content (mean value 0.8%) and lower monomer content (mean value 99.2%) than US/EU RBP	
	Size distribution	SEC-HPLC	Tier 2 : % Monomer	0	100	 monomer 99.2 % of CT-P13, 99.8% of US RBP 99.8% of EU RBP 	
urity	Size distribution	R CE-SDS	Tier 2 : % Sum H+L chains, % Non-glycosylated HC	96 96	94 94	 Highly similar to US/EU RBP %H+L/%NGHC 99.4 %/0.6 % of CT-P13 99.6 %/0.4~0.5 % of US RBP 99.5 %/0.4~0.5 % of EU RBP 	
	Size	NR CE-	Tier 2 :	0	97	 Slightly lower than US/EU RBP % IgG 95.1 % of CT-P13 98.2 % of US RBP 98.3 % of EU RBP 	
	distribution		% Intact IgG	U	97	 The level of one lot of EU Remicade (97.3%) was also outside the QR (97.38~99.08 %) of US Remicade lots Fragment : mainly H2L1 	

roper- ties	Attribute	Test Method	Similarity Acceptance criteria	(CT-P13 vs US RBP)	(EU vs US RBP)	Results and Conclusion	Metho Suitabili
						highly similar for monomer and HMW content in 3 products	
	HMWS	SV-AUC	Tier 2 : % Monomer % Higher Species	100 100 100 100		•Mainly monomer - 95.6~99.7 % of US Remicade, - 94.2~100 %of EU Remicade, - 95.4~99.8 % of CT-P13	
			⁷ Figher species			•HMW : dimers~pentamers - 0.3-4.5 % of US Remicade, - 0.0~5.8 %of EU Remicade, - 0.2~4.6 % of CT-P13	
						•Detected mainly monomer & dimer,	
ourity			Tier 2 :			•Also slightly greater level of HMW forms in CT-P13 - 0.1~0.2 % of US/EU Remicade, - 0.4~0.6 % of CT-P13	
	HMWS SEC-MALS WMOnomer 0 % HMW 0 WW Monomer 71 WW HMW 86	<mark>0</mark> 71	100 100 100 100	•MW monomer - 149~154 kDa of US Remicade, - 150~155 kDa of EU Remicade, - 151~157 kDa of CT-P13,			
					•MW HMW - 286~547 kDa of US Remicade, - 275~537 kDa of EU Remicade, - 244~564 kDa of CT-P13		

[Justification of Differences]

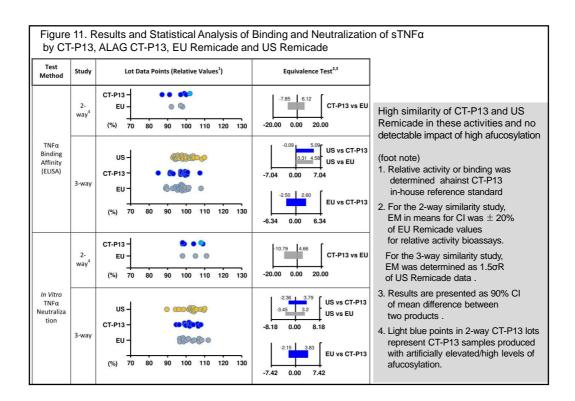
* higher HMW and lower monomer content : assessed of the clinical relevance in relation to immunogenicity

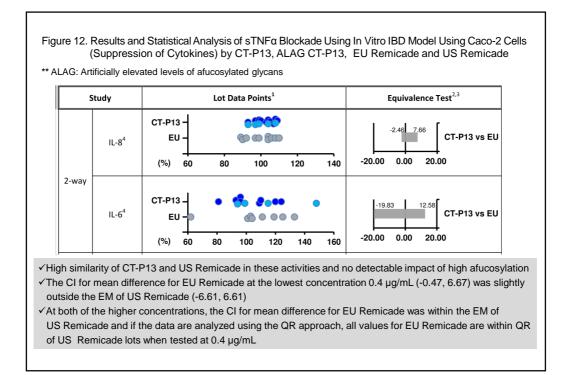
A. SEC profiles

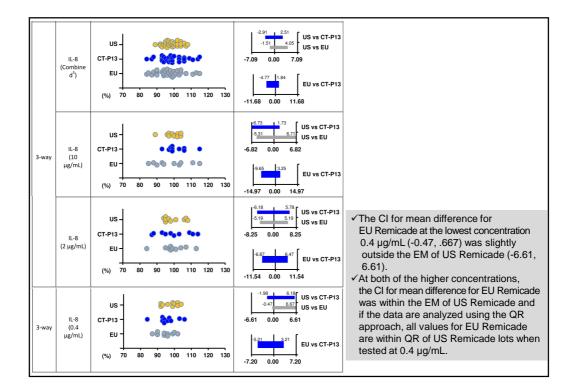
- Not to be clinically meaningful in repeat-dose studies (RA & AS) : No impact on similarity of PK, immunogenicity, or efficacy (Incidence rates of ADAs, Neutralizing Antibody (NAb) levels and titer values were similar)

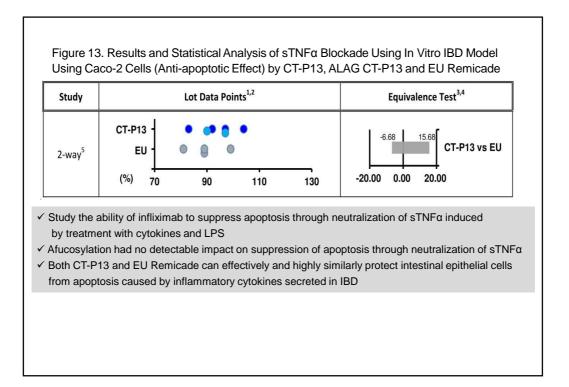
B. NR CE-SDS

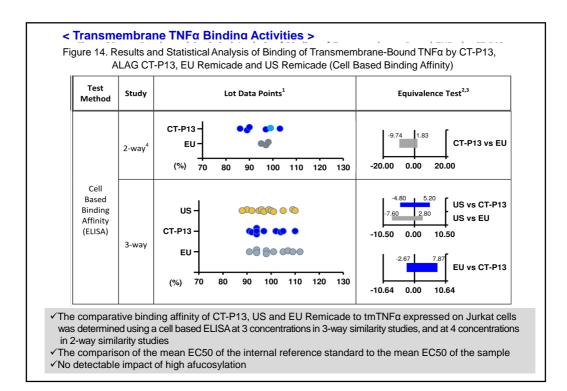
- Analysis of the TNFα binding affinity and in vitro TNFα neutralization assays of samples with different content of H2L1 : No impact was detected for H2L1 levels up to 5.7%
- Literature reports indicate that monovalent antibody fragments induce apoptosis with equal potency as bivalent molecule (Schaefer, 2011) and have no effect on FcRn binding, providing assurance that tmTNFα signaling activities and PK are unlikely to be affected

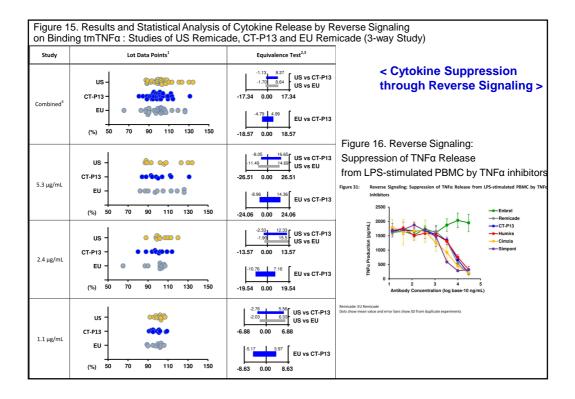

✓ Slightly different between results of SEC-HPLC, SEC-MALS and AUC due to analytic mechanisms

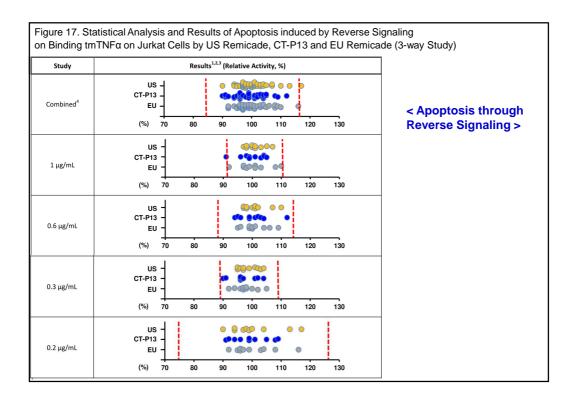

- SEC-HPLC and SEC-MALS use a chromatography step which may prevent detection of large multimers which do not enter the matrix whereas AUC does not involve a chromatography step.

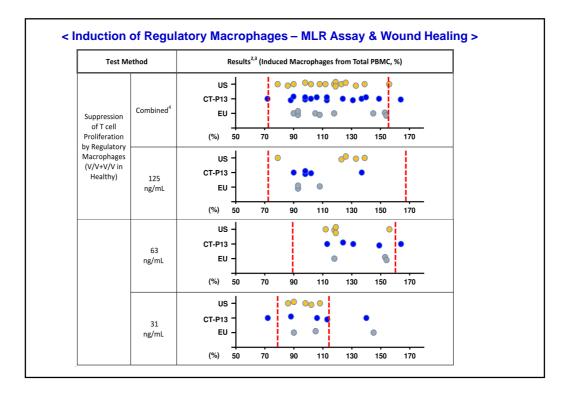

- However, the limit of detection of AUC has been reported to be higher than that of SEC (Manning et al, 2014).

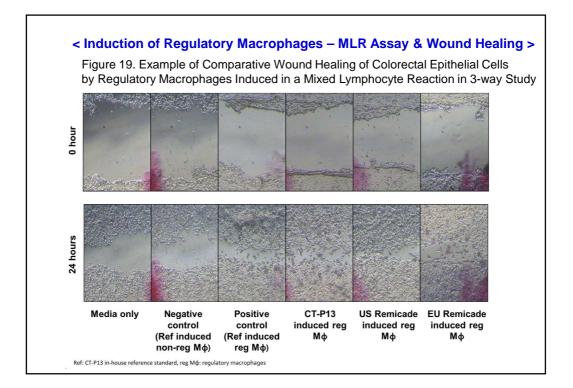

A	bsorption	n Coeffic	cient and Exe	cipient	S		
Properties	Attribute	Test Method	Similarity Acceptance criteria	(CT-P13 vs US RBP)	(EU vs US RBP)	Results and Conclusion	Method Suitability
purity	Sub-visible Particulates (1~10 μm size ranges)	Micro-Flow Imaging (MFI)	Tier 1 : 1 ≤, < 100 (μm) 2 ≤, < 100 (μm) 5 ≤, < 100 (μm) 10 ≤, < 100 (μm)	All Within EM	All Within EM	Similar	
	Sub-visible Particulates (1~10 μm size ranges)	Light Obscuration (HIAC)	Tier 1 : 2 ≤ (μm) 5 ≤ (μm) 10 ≤ (μm)	All Within EM	All Within EM	Similar	
Protein	Protein Content	Protein Concentration (UV280)	Tier 1 & 2 (reconstituted product)	Within EM, 100	- 92	within the EM, statistically within the QR	
content	Absorption coefficient	Amino Acid Analysis	Tier 1 & 2	Within EM, 100	-	Highly similar	
	рН	рН	Tier 2 :	100	100	Highly similar	
xcipients	Polysorbate80 amount	HPLC	Tier 2 : PS80 (w/v%)	100	100	Highly similar	
	Sucrose amount	HPAEC-PAD	Tier 2 : Sucrose (w/v%)	92	100	Highly similar	


roperties	Attribute	Test Method	Similarity Acceptance criteria (90% Cl of mean diff)	(CT-P13 vs US RBP)	(EU vs US RBP)	Results and Conclusion	Method Suitability
	MoA &	In Vitro TNFα Neutralization	% Relative activity by cell viability	Within EM	Within EM	Similar	
Binding	Efficacy- all indications	TNFα Binding Affinity (ELISA)	% Relative binding (EC50)	Within EM	Within EM	Similar	
to sTNFα Mc Effi	MoA & Efficacy- CD & UC	Caco-2 (Cytokine Suppression))	% Relative activity Combined conc At 10 μg/mL At 2 μg/mL At 0.4 μg/mL	Within EM Within EM Within EM Within EM	Within EM Within EM Within EM Not Within EM	Similar	
		Cell Based Binding Affinity	% Relative binding (EC50)	Within EM	Within EM	Similar	
Binding to tmTNFα	Efficacy-	Inhibition of Cytokine Release by Reverse Signaling	% Relative activity Combined conc At 5.3 µg/mL At 2.4 µg/mL At 1.1 µg/mL	Within EM Within EM Within EM Within EM	Within EM Within EM Not Within EM Within EM	Similar	









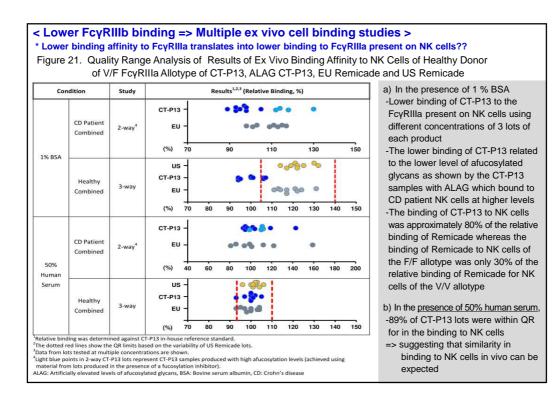
By US Rem	icade, CT-F	13 and EU Remicade (3-way Study)	
Test Me	thod	Results ^{1,2} (Induced Macrophages from Total PBMC, %)	
	2.5 μg/mL	US - CT-P13 - EU - (%) 0 1 2 3 4 5	6
Induction of Regulatory Macrophages (V/F+V/F in Healthy)	0.625 μg/mL	US - CT-P13 - EU - (%) 0 1 2 3 4 5	6
	0.156 µg/mL	US - CT-P13 - EU - EU -	_
		(%) 0 1 2 3 4 5	6

Properties	Attribute	Test Method	Similarity Acceptance Criteria	(CT-P13 vs US RBP)	(EU vs US RBP)	Results and Conclusion	Metho Suitabili
	FcγRI binding affinity	ELISA	Tier 2	100	100	Similar	
	FcyRIIa binding affinity	SPR	Tier 2	100	100	Similar	
	FcyRIIb binding affinity	SPR	Tier 2	100	100	Similar	
	FcγRIIIa V type binding affinity	SPR	Tier 2	85	100	Not similar (Lower)	
	FcyRIIIa F type binding affinity	SPR	Tier 2	61	100	Not similar (Lower)	
Binding assay	FcγRIIIb type binding affinity	SPR	Tier 2	90	100	Similar, BUT Lower	
-		Ex Vivo NK Cell		33	100		
		Binding, 1%		0	100	Not similar	
	NK cell binding	- % Relative binding	- % Relative binding	0	67	(Lower)	
	receptors (in	affinity via Fc combined conc. 33 100	100				
	presence of 50%		- At 50 μg/mL	89	89	Not similar	
	serum or 1% BSA)	Ex Vivo NK Cell Binding, 50%	- At 10 μg/mL	100	100	- Yes: 50 µg/mL, 10	
	20. all 0. 270 DOA)	Serum	- At 2 μg/mL	100	33	μg/mL	
		Serum		67	100	- No: 2 μg/Ml	
	FcRn binding affinity	SPR	Tier 2	Within EM	Within EM	Similar	
	C1q binding assay	ELISA	Tier 2	100	100	Similar	

Properties	Attribute	Test Method	Similarity Acceptance criteria	(CT-P13 vs US RBP)	(EU vs US RBP)	Results and Conclusion	Method Suitabilit
	CDC		Tier 2	92	91	Similar	
-		PBMC as effectors	Tier 2	100	100	Similar	
Bioassay/ mechanism of action exploration /		NK cells as effectors	Tier 2 - % Relative activity - Combined conc - At 8 ng/mL - At 4 ng/mL - At 2 ng/mL	96 100 96 96	99 100 97 97	Similar, BUT Lower	
	ADCC	LPS-stimulated monocytes as targets (Healthy Donor)	Tier 3 - At 8 concentrations (0.000013 μg/mL to 1 μg/mL)	No activity	No activity	Similar	
		LPS-stimulated monocytes as targets (IBD Patients)	Tier 3 - At 10 μg/mL and 50 μg/mL	No-Low activity	-	Similar	

<FcyRIIIa binding including FcyRIIIa of different allotypes (V/V, V/F, or F/F at position 158)>

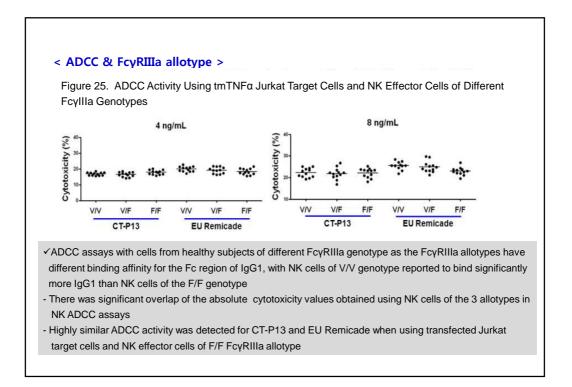
Table 12. Binding to FcyIIIa of Different Genotypes

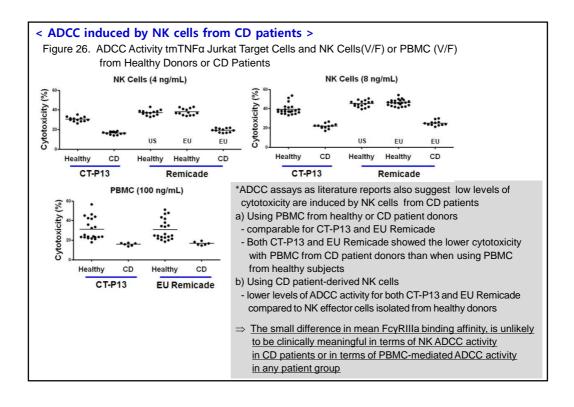

Biological Analysis	Genotype	Product	Absolute Value (KD [µM] or MFI) ³
		US Remicade	1.41
	v	CT-P13	1.79
FcyRIIIa Binding Affinity (SPR) ¹		EU Remicade	1.40
FCYKIIIa Binding Affinity (SPR)	F	US Remicade	4.43
		CT-P13	5.33
		EU Remicade	4.52
	v	CT-P13	1,475.7
FcyRIIIa Binding Affinity	V	EU Remicade	1,927.7
(<i>Ex vivo</i> , 1% BSA) ²	F	CT-P13	1,233.7
		EU Remicade	1,171.0

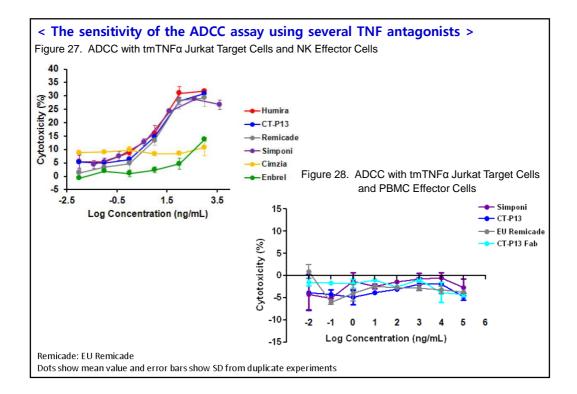
¹Absolute values are KD values. ²Absolute values are MFI values.

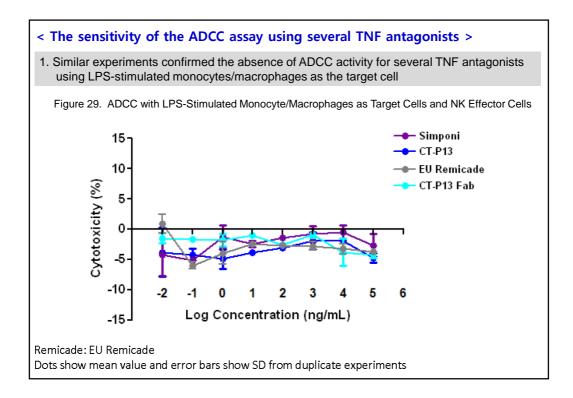
Ausonue values are wirr values. ³ The lower the KD value, the higher the binding affinity. BSA: Bovine serum albumin , KD: Dissociation equilibrium binding constant, MFI: Mean fluorescence intensity , SPR: Surface plasmon resonance

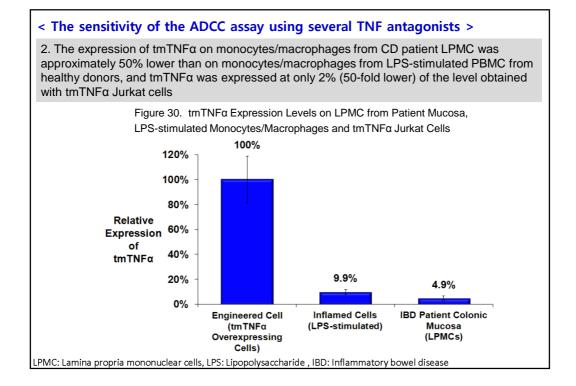
The difference observed in binding between CT-P13 and both US and EU Remicade is small in comparison to the difference in binding of US Remicade to FcyRIIIa of different genotypes

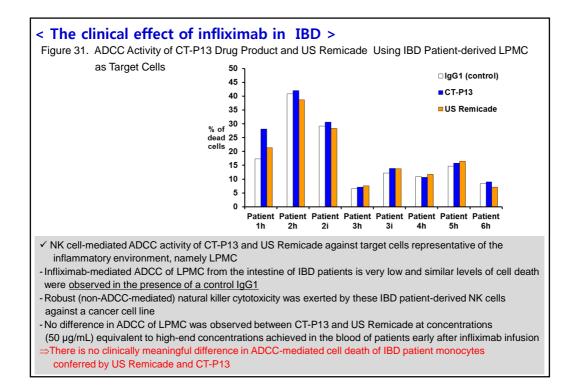

Biological Analyses	Study	Result ^{1,2} (Relative Binding, %)	
FcyRIIIa V type Binding Affinity —	2-way ³	CT-P13 - EU - (%) 70 90 110 130 150 170	 ✓ A slightly lower binding affinity (V&F allotypes) for CT-P13 lots
(SPR)	3-way	US - CT-P13 - EU - (%) 70 90 110 130 150 170	in comparison to EU/US Remicade => reflecting the lower level of afucosylated glycans
FcyRIIIa F type Binding Affinity (SPR)	2-way ³	CT-P13 - EU - (%) 70 90 110 130 150 170	✓ But, the KD values for US Remicade and CT-P13 fall into a <u>narrow range of rough</u> 1.2-2.3 µM for the FcγRIIIa V allotyp
	3-way	US - CT-P13 - EU - (%) 70 90 110 130 150 170	3.9–6.3 µM for the FcγRIIIa F allotyp and 9.11~15.6 µM for the FcγRIIIb

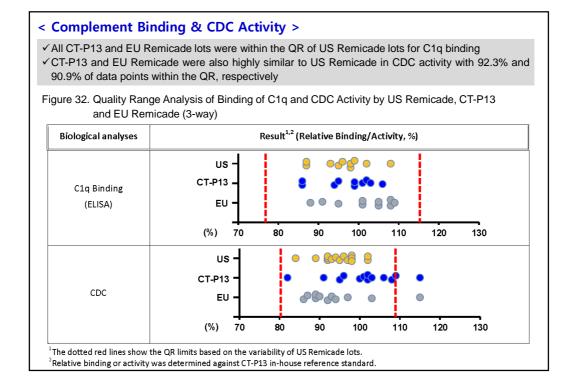


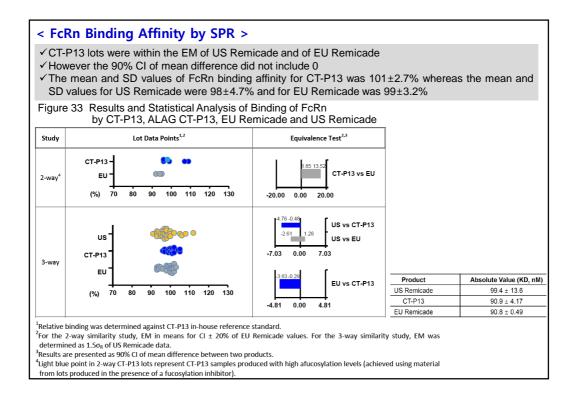

Biological Analyses	Study	Result ¹² (Relative Binding, %)	
FcyRIIIb Binding Affinity (SPR)	3-way	US - CT-P13 - EU - (%) 70 80 90 100 110 120 130 140 150	a) FcγRIIIb
FcyRIIa Binding Affinity (SPR)	3-way	US - CT-P13 - EU - (%) 70 80 90 100 110 120 130	-slightly lower binding affinity values were observed for CT-P13 lots in comparison wit US Remicade or EU Remicade lo -But high similarity with 90% of
FcyRIIb Binding Affinity (SPR)	3-way	US - CT-P13 - EU - (%) 70 80 90 100 110 120 130	CT-P13 lots within the QR of US Remicade lots b) FcyRIIa, FcyRIIb, and FcyRI -High similarity between the 3 products
FcγRI Binding Affinity (ELISA)	3-way	US	




Biological A	nalyses	Results ^{1,2} (Relative Activity, %)	
	Combined ³	US	Statistically highly similar ADCC activit was detected for CT-P13, US Remicad and EU Remicade in the <u>system usin</u> Jurkat cells overexpressing tmTNFa wit
	8 ng/mL	US	NK effector cells of V/F FcyRIIIa allotyp from healthy donors at three concentration in the linear range -For CT-P13 lots, 100%, 96%, and 96%
NK ADCC (Jurkat:NK V/F)	4 ng/mL	US - CT-P13 - EU - (%) 70 80 90 100 110 120 130 140 150 160	of lots were within the QR for ADCC activity at 8 ng/mL, 4 ng/mL, and 2 ng/ml -Nevertheless, a trend to lower values of NK ADCC activity was noted for CT-P1
	2 ng/mL	US	Iots in NK ADCC relative activity -Highly similar ADCC activity was detected for CT-P13, US Remicade an EU Remicade using Jurkat cells
PBMC ADCC Jurkat:PBMC V/F}	100 ng/mL	US	overexpressing tmTNFα with PBMC of V/F FcγRIIIa allotype from healthy donor at a single concentration of each product



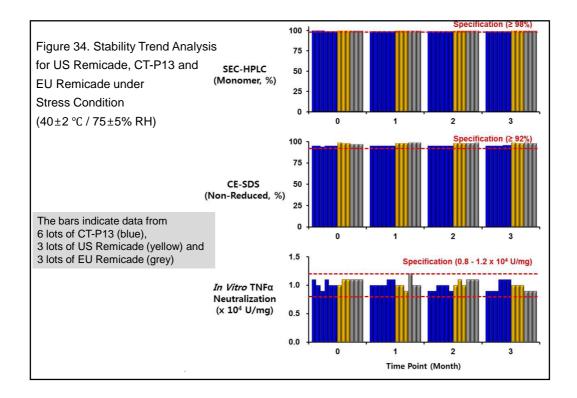


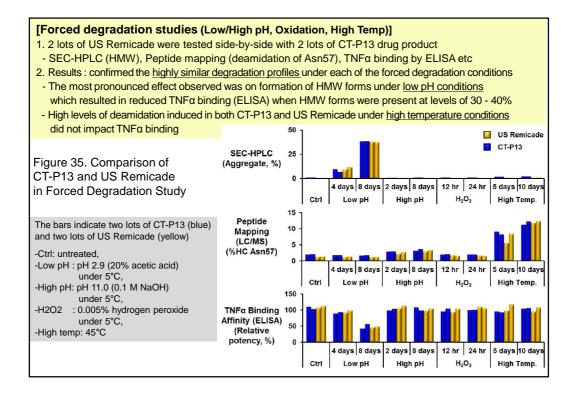


3.10. Evaluation of the Comparability of Stability Profiles

□ Protocols of the Comparative Stability Studies

- a) 2-way data (with EU Remicade)
- Real-time/real-temperature (5±3°C), Accelerated (25±2°C/60±5%RH),
- Stress conditions (40±2°C/75±5%RH)
- b) 3-way data (with US Remicade)
- Stress conditions (40±2°C/75±5%RH),
- Forced degradation studies (Low/High pH, Oxidation, High Temp) : side-by-side comparison using each 2 batches of CT-P13 and US Remicade


□ Results


- a) Real-time/real-temperature conditions : no appreciable changes
- b) Accelerated conditions : no significant changes
- c) Stress conditions (higher temperature) : trend of decreasing purities (SEC-HPLC, NR CE-SDS)

Discussions

- a) highly similar stability profiles in all comparative stability studies
- b) Under the forced degradation studies : confirmed the comparative degradation profiles

Stability	Conditions	Duration	CT-P13 Lots	US Remicade Lots	EU Remicade Lots	Stability Profile
Real-time	5 ± 3°C	36 m (CT-P13) 24 m (Remicade)	1	-	~	Comparable
Accelerated	25 ± 2°C, 60 ± 5% RH	6 m	~	-	~	Comparable
Stressed	40 ± 2°C, 75 ± 5% RH	3 m	~	1	~	Comparable
In-use (reconstitution)	5 ± 3°C	48 h	~	-	~	Comparable
	30 ± 2°C, 65 ± 5% RH					
In-use (infusion)	5 ± 3°C	48 h	~	-	~	Comparable
	30 ± 2°C, 65 ± 5% RH					
	30 ± 2°C, 75 ± 5% RH					
	30 ± 2°C, 75 ± 5% RH	48 h	~	~	-	Comparable
Forced degradation	Low pH (pH 2.9, 5°C)	4 d, 8 d	~	~	-	Comparable
	High pH (pH 11.0, 5°C)	2 d, 4 d				Comparable
	Oxidation (0.005% H ₂ O ₂ , 5°C)	12 d, 24 d				Comparable
	High Temp.(45°C)	5 d, 10 d				Comparable

